
A Systemic Approach to Maximize 
Heterogeneous System

Performance

Thomas Randall



Outline
● Overview
● Components of the Proposal

○ Immersion Cooling Study
○ Optimizing for Generations of Hardware
○ Efficient and Transferable Multi-Scale Tuning

● Timeline

2



What is a “Systemic Approach to Performance”?
● Different hardware systems

○ CPU, GPU, custom accelerators

● Different performance needs
○ Latency, energy efficiency, throughput

3



Who needs this?
● Focus on High Performance Computing (HPC)

○ Cloud, Industry, Government datacenters and supercomputers

4



Why do we need it?
● Unilateral approaches: missing specificity
● Rely on end-users: limited resource
● Ever-changing demands: continuous evolution

5



Primary Goals and Challenges
● Cooperation between hardware and software

○ Not always intuitive
○ Trade offs

● Forward-looking flexibility
○ Allow future improvement
○ Shifts in state-of-the-art and practice

● Minimal cost for maximum benefit
○ Near-infinite maximum cost
○ Premature optimization is the root of all evil – Donald Knuth

6



Core Components
● Hardware

○ Dennard Scaling, Moore’s Law, Amdahl’s Law
○ New explosion of architectures
○ Key focus: Energy efficiency for sustained performance

● Software
○ Capable software stacks
○ Sea of frameworks
○ Key focus: Algorithm design for hardware acceleration

● Tuning
○ The glue to hold everything together… longer
○ Key focus: Improve efficiency of re-usable information

7



Outline
● Overview
● Components of the Proposal

○ Immersion Cooling Study
○ Optimizing for Generations of Hardware
○ Efficient and Transferable Multi-Scale Tuning

● Timeline

8



Proposed Works
● Immersion Cooling Study

○ Liquid immersion cooling technology
○ Designed for energy efficiency
○ Opportunity to sustain software performance

● Optimizing for Generations of Hardware
○ Word2Vec algorithm and performance demands
○ Effective acceleration for many kinds of GPUs at once
○ Opportunity for hardware advancements to benefit software

● Efficient and Transferable Multi-Scale Tuning
○ Automatic performance tuning for any hardware-software combination
○ Novel transfer learning technique
○ Opportunity to reduce continuous tuning costs and expand scope

9



Specific Contributions
● Immersion Cooling Study

○ Quantifying “greater than air” advantage
○ First empirical study of energy and performance impacts

● Optimizing for Generations of Hardware
○ Reduce cost of optimization through architecture-leaning approach
○ Design for lasting performance improvement
○ Limit depth of specialization required

● Efficient and Transferable Multi-Scale Tuning
○ Reducing barrier to entry
○ Increase scope of benefits gained
○ Overcome shortcomings of existing techniques

10



Significance and Impact
● Immersion Cooling Study

○ Environmental benefits from energy efficiency
○ Sustain higher performance through thermal management

● Optimizing for Generations of Hardware
○ Reduce memory traffic by 89%
○ 1.4-4.3x speedup over multiple hardware generations

● Efficient and Transferable Multi-Scale Tuning
○ Permit greater opportunity for performance tuning
○ Up to 12.81x additional speedup in short-term evaluations

11



Outline
● Overview
● Components of the Proposal

○ Immersion Cooling Study
○ Optimizing for Generations of Hardware
○ Efficient and Transferable Multi-Scale Tuning

● Timeline

12



Cooling down computer systems
● Electric energy lost as heat
● Denser compute → greater heat

○ Least efficient delivery → demanding components
● Too much heat → performance loss

○ Lower clock rate
○ System down time

● Cooling components relocate heat
○ Recover faster
○ Sustain performance

13



Issues of energy and efficiency
● LBNL: ~2% of US electricity consumption in data centers

○ International Energy Agency: Europe is reported around ~1.5%
● McKinsey & Company: 40% of data center energy use for cooling

○ Year-over-year demand increases by 10%
● Air-based cooling cannot maintain pace

○ Current GPUs often throttle
○ Future chips with kW-scale TDP

● Water conducts 30x more heat per unit volume

14



State of the Art: Direct Liquid Cooling
● Circulate chilled facility water through cold plates

○ Microchannels for fluid circulation
○ Other fluids can be used

● Simple in-rack setup
○ Efficiency improved by thermal conditions

● Fluid completely contained in system
○ Safety for computing components
○ Some reduction in effectiveness
○ Minimal complication for maintenance

15



State of the Art: Dual Phase Immersion Cooling

16

● Thermodynamic 
heat transfer

● No moving parts
● Gas complicates 

maintenance
● Fluids are not 

environmentally 
friendly

● Nonzero risk of 
combustion!



State of the Art: Single Phase Immersion Cooling
● No evaporation
● Circulate fluid, 

similar to DLC
● Maintenance is 

simpler
● Liquid-liquid heat 

exchange is very 
efficient

● Large industry 
focus

17



Previous studies
● Foundational effectiveness
● Design and properties of dielectric fluid
● Number of pumps and their arrangement
● Effects of long-term immersion on computing hardware
● Capital + Maintenance costs

18



Proposed empirical study
● Non-generalizable, but starting point is necessary

○ Especially relative to air-based cooling
● System under study: Submer SmartPod v3

○ White mineral oil dielectric fluid
○ Heat exchange with 11C facility water
○ Comparable hardware in CRAC and fan environment for comparison

● Thermal characteristics to observe
○ Challenge: Represent broad variety of HPC workload conditions
○ Insight: Heat exchange within the system
○ Challenge: Safely maintain performance at limits

19



Applications of Interest
● GPU Application Selection

○ Memory-Intensive
■ Stream
■ EMOGI

○ Compute-Intensive
■ DGEMM
■ MD5 Cracking

○ Machine learning
■ MLPerf

● CPU Application Selection
○ NPB
○ HPLinpack

20



Remaining Work
● GPU Application Selection

○ Memory-Intensive
■ Stream
■ EMOGI

○ Compute-Intensive
■ DGEMM
■ MD5 Cracking

○ Machine learning
■ MLPerf

● CPU Application Selection
○ NPB
○ HPLinpack

● Air-cooled replication
21



Preliminary Results: DGEMM
● Orange: with 

application 
running

● Blue: no 
application 
running

● ½ hour warmup
● 8 hours runtime
● 8 hours return to 

initial conditions
● Resting 22C

22



Preliminary Results: DGEMM
● Titan V GPU

○ 12 GB HBM2 
@651 GB/s

○ 5120 Cores 
@14.9 TFLOP/s

● Thermal limits
○ Target: 85C
○ Supported: 89C
○ Max: 91-95C
○ Throttle: 97C
○ Shutdown 100C

● Solid line mean
● Shaded min/max

○ Over supported 23



Preliminary Results: DGEMM
● AMD EPYC 

7351P CPU
○ 16 cores (32 

logical)
○ 2.4 GHz

● High CPU activity 
despite being a 
GPU application

● Similar time to 
return to baseline 
(sub-22C)

24



Outline
● Overview
● Components of the Proposal

○ Immersion Cooling Study
○ Optimizing for Generations of Hardware
○ Efficient and Transferable Multi-Scale Tuning

● Timeline

25



Introducing Word2Vec
● Natural Language Processing (NLP) machine-learning algorithm

○ Training data: human-written text
○ Unsupervised objective: predict word co-occurrence
○ Model output: dense semantic vectors for words

● Downstream uses in NLP
○ Sentiment analysis
○ Machine translation
○ Spam detection
○ Grammar correction
○ Summarization

26



Bird’s eye view of algorithm
● Text is decomposed into “sentences”

○ Embarrassingly parallel
● Sentences are composed of context windows

○ Words close enough for association
○ Serial order necessary for convergence and correctness

● Noise-contrastive samples (negatives) for each context window
○ Positively correlate words within the window
○ Negatively correlate spurious selection of words

27



Case for optimization
● Repeated usage

○ Larger dataset → richer model
○ Private and domain-specific datasets mean pretraining not always enough
○ Language evolution necessitates retraining

● Ripe for GPU acceleration
○ Portions are embarrassingly parallel
○ Heavily leans on matrix processing – implicitly PCA
○ Minibatches with simple network architecture

28



Suboptimal GPU performance
● Initial implementations for K40 GPUs failed to scale to successive hardware 

generations
● CPUs maintained general performance advantage

29

Hardware Platform pWord2Vec (CPU) 
Millions Words/Sec

Wombat (GPU) 
Millions Words/Sec

Broadwell CPU, P100 GPU 10.36 2.86

Haswell CPU, TitanXP GPU 8.4 3.3

Skylake CPU, V100 GPU 9.32 10.33



Core problems for GPUs
● High cost of memory latency

○ Negatives are cache-averse and explicitly harm locality
○ Repetition of context windows not exploited by matrix tiling

● Low computational intensity
○ Simple network = minimal compute
○ Small matrices limit gains from tiling

● Weak scaling does little to aid performance
○ More scheduling work
○ Not as much computational demand
○ Much more memory demand

30



Core opportunities for improvement
● Vector processing reduces data movement

○ Compute everything in register with minimal memory overhead
○ Fixed context width allows for limited negative samples
○ Fuse network operations

● Known data reuse improves cache utilization
○ Explicitly managed L1 cache – GPU shared memory
○ Perfect cache eviction
○ Maximum cache hit rate

● Together: 89% reduction in memory traffic!
○ Maintain computational intensity
○ Maintain semantic correctness

31



Experiment with 1 Billion Words dataset
● Register-W2V near CPU throughput on TitanXP instead of V100

○ Vs prior GPU: 1.35X (P100), 2.57X (TitanXP), 3.85X (V100) 
● FULL-W2V exceeds CPU throughput across all hardware generations

○ Vs prior GPU: 5.2X (P100), 5.7X (TitanXP), 4.3X (V100)

32



Conclusions
● Better software alignment to hardware became necessary

○ Deep understanding of just hardware or just software insufficient
● Possible to benefit multiple generations of performance

○ Register file and shared memory sizes increased
○ Memory latency bottleneck more important

33



Outline
● Overview
● Components of the Proposal

○ Immersion Cooling Study
○ Optimizing for Generations of Hardware
○ Efficient and Transferable Multi-Scale Tuning

● Timeline

34



Putting it all together
● The best performance usually involves navigating trade-offs

○ Configurable hardware and software settings
■ Source code adjustment
■ Compiler flags
■ Runtime options
■ Environment settings

● Produce the highest performing configuration via tuning
○ Speedup often by an order of magnitude

● Long tail of benefits
○ Repeated executions with better performance
○ Energy savings
○ Reusable libraries and modules

35



Cost of tuning
● Not everything gets tuned

○ HPC programs execute for hours at a time, tune via microbenchmarks
○ Lack of resources
○ Lack of time

● Simple kernel takes 25 seconds to evaluate performance
○ Ten parameters to tune in source code

■ Three loops are tiled with distinct sizes between 4 and 2048
■ One pair of loops have an optional interchange
■ Six arrays may be independently packed during loop traversals

○ Brute force: 376,320 combinations, 100+ days of serial compute
● Meaningful tuning requires sophisticated technique

36



(x,y)

Existing tuning approaches
● Grid search: simple

○ Coarse granularity - fast but inaccurate
○ Refinement - prone to local minima

● Performance modeling: generalize
○ Limited applicability
○ Immense initial cost
○ Generalization not guaranteed

● Machine learning: specialize
○ Large data demand
○ Cumbersome to handle many tasks

37



Exploratory surrogate models
● BLISS, YTOPT, GPTune
● Surrogate represents known information and trend

○ Often includes uncertainty measure
○ Iteratively explore and exploit knowledge

● Powerful convergence and efficiency, but restart from scratch
○ Need capability to leverage known data from a related context

38



Opportunity for reuse
● In HPC, applications often tuned for multiple scales

○ Additional data, same system resource
○ Additional data AND additional system resource

● Transfer techniques improve efficiency of related tuning
○ Faster search = less resource expenditure
○ Still converge to global optimum

● Existing transfer techniques
○ Static tuning spaces
○ Require transfer calibration
○ Result: under-utilized except in highest-impact areas

■ BLAS
■ ML libraries

39



Proposed transfer model: Gaussian Copula
● Statistical model: multivariate probability distribution

○ Disjoint marginal representation per variable
○ Correlation as joint distribution

● Near-optimal short-term transferred search process
○ Distributions do not require calibration
○ Probability model forecasts budget
○ First generative transfer model for search

40



Distributions as search
● Challenges

○ Identify useful distribution
○ Adjust distribution intelligently
○ Guarantee utility of randomness

● Insights
○ Existing high-performing data forms distribution

■ Implicitly excludes sub-optimal regions
○ Limited complexity of distribution shifts

■ Especially when not crossing new bottlenecks
○ Hypergeometric sampling

■ Describe expected behavior under distribution

41



Preliminary Results: Few-shot Polybench tuning

● One application three input data scales (SM, ML, XL)
● Speedup on evaluation number (parenthesized)

○ Limited to 30 evaluations
● Three results for GC technique with transfer

○ First evaluation
○ Within predicted budget
○ Best within 30 evaluations

● Bayesian Optimization: SOTA surrogate tuning from scratch
● GPTune: SOTA transfer learning ML model 42



Preliminary Results: Few-shot Polybench tuning
● Best results 

consistently 
on-budget

○ First result exceeds 
SOTA 44% tasks

○ Highest speedup 
78% tasks

● GC up to 12.81X 
over SOTA

● SOTA no more than 
0.24X over GC

43



Remaining Work
● Prototype has demonstrated key capabilities

○ Transfer autotuning without calibration
○ Budgeting capability
○ Short term only: No continuous learning

● Improvements
○ Tune multiple scales at once (data + system)
○ Incorporate other tools for longer term effectivness

44



Outline
● Overview
● Components of the Proposal

○ Immersion Cooling Study
○ Optimizing for Generations of Hardware
○ Efficient and Transferable Multi-Scale Tuning

● Timeline

45



Immersion Cooling Study
● Remaining SPLIC experiments

○ To be completed by mid-May
● Air-cooled experiments

○ To be completed by late-May
● Publication target

○ IISWC’24 (late-May submission)

46



Optimizing for Generations of Hardware
● Work tentatively completed

○ Best Paper award at ICS’21
■ FULL-W2V: Fully Exploiting Data Reuse for W2V on GPU-Accelerated Systems

47



Efficient and Transferable Multi-Scale Tuning
● Initial prototype successful with single-scale tuning

○ Published ICS’23
■ Transfer-learning-based Autotuning using Gaussian Copula

● Multi-scale tuning requires more novel contributions
○ Collaboration with Iowa State University

■ Currently validating experimental methodology
■ Seeking publication summer 2024

○ Collaboration with Argonne National Lab
■ Currently improving proof of concept
■ Seeking publication early 2025

48


