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Systemic Approach
● New hardware creates new opportunities

● Ensure software leverages available performance
● Tune their integration for optimal results
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Target Environments
● Focus on High Performance Computing (HPC)

○ Cloud / Hyperscalers / Government
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Why Do We Need It?
● Evolving landscape

○ From single core to GPU-accelerated
● Strong foundation

○ “Golden Age” of Microarchitecture
○ Mature practices
○ Years of expertise

● Future demand
○ New opportunities
○ Re-learning old tricks
○ Expert efforts don’t scale
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Goals and Challenges
● Increase Hardware & Software synergy

○ Not always intuitive
○ Trade offs

● Prepare with flexibility in mind
○ Allow future improvement

● Minimal cost for maximum benefit
○ Near-infinite maximum cost
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Core Components and Contributions
● Hardware

○ Increased cooling demand
○ Understand SPLIC technology via benchmarks
○ First study on applications

● Software
○ Underperforming hardware capability
○ Redesign for acceleration
○ Extend optimizations through hardware generations

● Tuning
○ “Glue” holds everything together
○ Novel transfer learning technique
○ Predict & improve low cost knowledge re-use
○
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Significance and Impact
● Hardware

○ Identify real problems and opportunities
○ Trade-off thermal capacity / responsiveness

● Software
○ Reduce memory traffic 89% vs SOTA
○ 5.72-6.51x speedup across hardware generations

● Tuning
○ 12.81x additional speedup over SOTA
○ Predictable success and failure conditions
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Outline
● Background and Overview
● Systemic Approach

○ Hardware
■ “Thermal Behaviors in Liquid Immersion Cooling under Various 

Workloads: a Case Study” in the Proceedings of the International 
Green and Sustainable Computing Conference 2024

○ Software
○ Tuning

● Concluding Discussion
● Q&A
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Accelerators Demand
● Electric power → heat

○ Sacrifice performance or $

● 25 years → KW-scale TDPs!

● Air’s capacity is exhausted
○ Need better cooling
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Voodoo3 3500 TV AGP
1999, 15 Watts TDP
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Single Phase Liquid Immersion Cooling
● Direct contact with hardware

○ Dielectric
○ Efficient heat exchange
○ Recirculate coolant

■ No evaporation

● Large industry focus
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Previous Studies
● Foundational effectiveness
● Design and properties of fluid
● Amount/arrangement of pumps
● Effects of long-term immersion on hardware
● Capital & Maintenance costs

● Lack understanding of:
○ Practical hotspots and behavior
○ Capacity vs Responsiveness
○ Range of operating conditions
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Empirical Study
● Submer SmartPod v3

○ White mineral oil
○ 11C facility water

● Traditional air-cooled rack
○ Similar hardware setup
○ 23C air

● Observing thermal behaviors
○ Under variety of HPC workload 

conditions
○ Heat exchange within the 

system, components
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Metrics & Benchmarks

15

● Node-level
○ Temperatures
○ Overall power draw

● GPU Accelerators
○ Temperatures
○ Power usage

● SPLIC Tank
○ Coolant & water temperatures, 

flow rates
○ Pump RPM

● Estimate
○ Cooling-induced energy



Limitations of Air
● Always cooling (safety)
● Minutes to cool temperatures
● Lower thermal capacity

○ Can’t move much more 
heat

● Well-tuned, approaching 
limits
○ Dated GPU hardware
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Everything Affected Similarly

17● Normal SPLIC operation



Possible Risk to Hardware

18● No chilled water while applications run



Energy Efficiency Not Guaranteed
● Passive cycles waste power

○ Low thermal burden
○ +15 kJ CUDA Stream
○ +19 kJ HPL

● Peak dissipation more power efficient
○ High thermal burden
○ -4 kJ CUDA DGEMM
○ -7 kJ NPB EP

● Tuning required
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Takeaways
● Coolant equally distributes heat
● SPLIC has delayed responses, possibly wasted energy!

○ Requires tuning
● Compute introduces most heat

○ Other components may be hotter!
● Air limited by capacity
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Outline
● Background and Overview
● Systemic Approach

○ Hardware
○ Software

■ “FULL-W2V: Fully Exploiting Data Reuse for W2V on 
GPU-Accelerated Systems” BEST PAPER in the Proceedings of the 
International Conference on Supercomputing 2021

○ Tuning
● Concluding Discussion
● Q&A
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Word2Vec: CPU > GPU?
● 3 layer neural network

○ Words w → d-dimensional embeddings e
● Data-intensive GPU ports

○ Suboptimal usage of memory hierarchy
○ We improve fundamental approach to hardware

22
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Core Problems for GPUs
● Low computational intensity

○ Small matrices
○ Low reuse

● High cost of memory latency
○ Cache-averse behaviors
○ No locality between matrices

● Preserve embedding quality
○ Extra parallelism → threaten 

convergence?
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Independence of Negative Samples
● Challenge: Random selections

○ Cache misses!
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Independence of Negative Samples
● Challenge: Random selections

○ Cache misses!
● Opportunity: Reusable data
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Independence of Negative Samples
● Challenge: Random selections

○ Cache misses!
● Opportunity: Reusable data

○ Random = independent order
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Independence of Negative Samples
● Challenge: Random selections

○ Cache misses!
● Opportunity: Reusable data

○ Random = independent order
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● Benefits
○ Fine-grain parallelism
○ Maximize register usage
○ Interleave computation & latency



Lifetime Reuse of Context Words
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Lifetime Reuse of Context Words
● Context words reappear

○ Explicitly cache for full duration
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Context windows include adjacent words

Lifetime Reuse of Context Words
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Context windows include adjacent

Current Window:

Previous Window:

● Context words reappear
○ Explicitly cache for full duration
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Memory:



Context windows include adjacent words

Lifetime Reuse of Context Words
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Context windows include adjacent words

Context windows include adjacent words

Current Window:

Previous Window:

● Context words reappear
○ Explicitly cache for full duration

● Benefits
○ High cache hit rate
○ 89% R/W reduction

GPU Shared 
Memory:



CPU Becomes Bottleneck
● Heterogeneous requirements

○ Reduce syscalls
○ String conversion

● 12.4–15.9X peak throughput increase
○ Text8 for throughput; 1bw for semantic quality
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Highest Throughput Across Generations
● Independence of Negative Samples (INS)

○ 5.12X faster than CPU on TitanXP
● INS + Lifetime Reuse of Context Words

○ Up to 6.51X faster than CPU (all architectures)

35(INS only)(INS + LRCW) Prior SOTA GPUs Prior SOTA CPUs



Takeaways
● Massive throughput improvements

○ Better alignment
○ Deep understanding necessary

● Benefit multiple HW generations
○ Register file and shared memory sizes increased
○ Memory latency bottleneck more important
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Outline
● Background and Overview
● Systemic Approach

○ Hardware
○ Software
○ Tuning

■ “Transfer-learning-based Autotuning using Gaussian Copula” in the 
Proceedings of the International Conference on Supercomputing 
2023

● Concluding Discussion
● Q&A
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Put it Together
● Tuning is balancing trade-offs
● Best-performing configuration

○ Speedup / energy / latency / 
precision…

○ Often by an order of magnitude
● Long tail benefits

● Yet, not everything is tuned
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Cost of Tuning
● Small simple kernel

○ 25 seconds to compile and measure
● Simple tuning space

○ Ten source code parameters
○ 10,000+ combinations, easily

● Exhaustive cost
○ 100+ days of serial compute
○ What if I have different input?
○ What if I have 10,000 machines?
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Opportunity for Reuse
● HPC applications tune multiple scales
● Transfer improves efficiency of tuning

○ Less resources
○ Still close to optimal

● Existing transfer techniques
○ Require calibration
○ Regression needs big data
○ Under-utilized

40
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Gaussian Copula (GC) TL-Based Autotuning
● Probabilistic model

● Maximize few-shot between tasks
○ Common in HPC

● Transfer without regression
○ Reduce cost

■ Less data
■ Immediate performance

○ Estimate success
■ Prior to evaluations
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GC Few-Shot TL Autotuning
● Fit space and prior task data
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GC Few-Shot TL Autotuning
● Fit space and prior task data

○ Prompt with new task
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GC Few-Shot TL Autotuning
● Fit space and prior task data

○ Prompt with new task
○ Generate evaluation 

candidates
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GC Few-Shot TL Autotuning
● Fit space and prior task data

○ Prompt with new task
○ Generate evaluation 

candidates

● Demonstrate on benchmarks
○ 64% peak in one shot
○ 12.81✕ higher peak (20.58

✕→33.39✕) vs previous 
SOTA
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Distributions as Search
● GC lacks regression

○ No comparisons/ranking
○ Minimal data = distribution

46

Ideal subset

Search Space



Distributions as Search
● GC lacks regression

○ No comparisons/ranking
○ Minimal data = distribution

● Provide search boundaries
○ Under-represented = Poor traits
○ Over-represented = Solved traits
○ Variance = Opportunity to explore
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Distributions as Search
● GC lacks regression

○ No comparisons/ranking
○ Minimal data = distribution

● Provide search boundaries
○ Under-represented = Poor traits
○ Over-represented = Solved traits
○ Variance = Opportunity to explore

● Probability estimate
○ Predict # evaluations
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Conditional Sampling as Transfer
● Different scales require different 

solutions
○ Impose constraint
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Conditional Sampling as Transfer
● Different scales require different 

solutions
○ Impose constraint

● Other marginals adjusted
○ All data recontextualized

50



Conditional Sampling as Transfer
● Different scales require different 

solutions
○ Impose constraint

● Other marginals adjusted
○ All data recontextualized

● Sample from distribution
○ No wasted samples
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Immediate Performance
● Polybench Applications

○ Linear Algebra, Image 
Processing, Stencils, Data 
Mining

● 3mm XL: 12.81✕ more 
speedup than prior SOTA
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Immediate Performance
● Polybench Applications

○ Linear Algebra, Image 
Processing, Stencils, Data 
Mining

● 3mm XL: +12.81✕ more 
speedup than prior SOTA

● GC exceeds prior SOTA 
performance

○ 1st evaluation: 44%
○ Within budget: 78%

● Worst margin of performance 
is -0.24✕ speedup
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Consistently Better
● GC selects better configuration than prior work almost every single evaluation
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Limited By Complexity

● heFFTe: Exascale benchmark application
● Most learning must be performed on-task
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Explaining Failure
● Knowledge has low utility

○ Tasks change too much
○ Dependent & complex variable 

relationships
● GCTLA’s budget and correlation warn!

○ No budget
○ No correlation despite expectation

● Warning, not solution
○ More training data?
○ Train from scratch?
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Outline
● Background and Overview
● Systemic Approach

○ Hardware
○ Software
○ Tuning

● Concluding Discussion
● Q&A
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Summary and Broader Impacts
● Exciting hardware

○ Improve thermal management within HPC
○ Develop designs together

● Effective software
○ Leverage deep understanding
○ Performance scaling to hardware 

● Practical tuning
○ Novel technique effective with minimal data
○ Broader utilization, greater clarity
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Future Works (Science is never “done” ™)
● Hardware

○ Full accounting of water and energy
○ Effectiveness of forced induction
○ Firmware adaptation for better demand response

● Software
○ Locality between applications and BLAS
○ Determining maximum extent of reuse
○ New application domains

● Tuning
○ Other probability models
○ Supporting model paradigms
○ Multi-scale tuning remains challenging! 59
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Direct Liquid Cooling
● Circulate liquid via cold plates

○ Microchannels
● Simple in-rack setup

○ More efficient with hotter fluid
● Fluid completely contained

○ Safety for components
○ Minor effectiveness loss
○ Low maintenance overhead
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Dual Phase Immersion Cooling

63

● Physics-driven heat 
transfer

● No moving parts
● Gas complicates 

maintenance & safety
● Fluids not eco friendly
● Nonzero risk of 

combustion!



Issues of energy and efficiency
● LBNL: ~2% US electricity in data centers

○ International Energy Agency: Europe ~1.5%
● McKinsey & Company: 40% data center energy for cooling

○ +10% year-over-year
● Air-based cooling won’t grow

○ Current GPUs throttle
○ kW-scale TDPs melt

● Water conducts 30x more heat per unit volume
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Hardware Preparation
● Remove

○ Thermal paste
○ Fans from power supply, 

motherboard
● Add

○ Indium foil
● Be careful!

○ Ethernet & power cables
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● Immersion can be a one-way trip
○ Some hardware is 

immersion-only
● Near-identical servers in air-cooled 

rack/cabinet
○ Fans in chassis
○ Rear door heat exchange

Air-Cooled Replica Server
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SPLIC and Air-cooled Evaluation Platforms
● Right: SPLIC
● Bottom: Air-cooled
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Thermal Deltas by Hardware Component
● Compute drives heat

○ Only GPU risks thermal
● Air is somewhat uniform

○ CPUs heat up 1.3X faster 
than SPLIC

○ GPUs heat up 1.2X slower 
than SPLIC
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Inconsistent, Improving Efficiency
● Pumps reduce hotter coolant temperature more
● Many ineffective periods
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Compute Used > Device Used
● Lower values = faster heat accumulation
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Little Performance Deviations
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Energy Efficiency Not Guaranteed
● Passive cycles waste power

○ +15 kJ CUDA Stream
○ +19 kJ HPL

● Peak dissipation more power efficient
○ -4 kJ CUDA DGEMM
○ -7 kJ NPB EP

● Known theoretically 1

○ +1.6x heat capacity, +6.5x thermal conductivity
○ +100x viscosity, +693x denser

● Tuning required

72
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Why Optimize Word2Vec?
● Repeated usage

○ Larger dataset → richer model
○ Pretraining not always enough
○ Language evolution: more training

● Ripe for GPU acceleration
○ Embarrassingly parallel
○ Simple network architecture
○ … CPUs were faster!!
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Suboptimal GPU Performance
● Optimizations for K40 GPUs (2013) failed to 

continue scaling performance
● CPUs maintained general performance 

advantage

74

Hardware Platform pWord2Vec (CPU) 
Millions Words/Sec

Wombat (GPU) 
Millions Words/Sec

Broadwell CPU, P100 GPU (2016) 10.36 2.86

Haswell CPU, TitanXP GPU (2017) 8.4 3.3

Skylake CPU, V100 GPU (2018) 9.32 10.33



Bird’s Eye View of Algorithm
● Text is decomposed into “sentences”

○ Embarrassingly parallel
● Sentences are composed of context windows

○ Words close enough for association
○ Serial order necessary for convergence and correctness

● Noise-contrastive samples (negatives) for each context window
○ Positively correlate words within the window
○ Negatively correlate spurious selection of words
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FULL-W2V Coordination and Decomposition
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Comparing Memory Demand
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In Depth Word2Vec Memory Demand
● Gigabytes-per-epoch
● Primarily reduce L1 demand

○ Reuse in shared not reported by tool (all implementations)
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Word2Vec Evaluation Platforms
● Span multiple CPU and GPU generations
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Word2Vec Datasets and Evaluations
● Text8 benchmarks throughput over 20 epochs
● One Billion Words benchmarks quality after 5 epochs
● Quality measured by

○ Spearman’s rank correlation coefficient WS-353 and SimLex-999
○ Hyperwords analogy scores
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Throughput on One Billion Words Corpus
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Why Word2Vec Issues Better
● Better warp availability

○ Max active warps is 16 on both XP and V100

● Higher IPC / fewer stalls
○ Only comparable between HIGHLY similar implementations
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Minimal Effects on Embedding Quality
● One Billion Words corpus
● Average over 5 repeated trials
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(x,y)

Existing Approaches
● Grid search: simple

○ Fast and imprecise
○ Precision costs speed

● System modeling: generalize
○ Costly one-time setup
○ Inflexible

● Application-based ML: specialize
○ Need lots of data
○ High quality results

● Transfer learning: re-use knowledge
○ Reduce needed data
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Practical Example of Tuning Costs
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Rejection Sampling Costly
● Other generative techniques lack conditional sampling at considerable cost to 

efficiency
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Exploratory surrogate models
● BLISS, YTOPT, GPTune
● Surrogate represents known information and trend

○ Uncertainty measure
○ Iteratively explore & exploit

● Powerful efficiency, but restart from scratch
○ Need to leverage known data
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Shortcomings of Prior TL
● Regression requires new data for calibration

○ Expensive restart
○ Random collection

● Machine-learning scales to BIG DATA
○ Desirable to use minimal data
○ Long-term convergence too slow
○ Limited improvement

● Primary gap:
○ Simple
○ Aggressive
○ Transferrable

88



GC Model
● Multivariate probability distribution
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GC Model
● Multivariate probability distribution
● Components

○ Disjoint marginal per variable
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GC Model
● Multivariate probability distribution
● Components

○ Disjoint marginal per variable
○ Correlations as joint distribution
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GC Model
● Multivariate probability distribution
● Components

○ Disjoint marginal per variable
○ Correlations as joint distribution

● Capabilities
○ Samples ↔ Distributions
○ Conditional sampling
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“Good” Distribution from Filtered Data
● Need limited tuning space coverage

○ |generable| / |space|
○ Reduce, not eliminate
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“Good” Distribution from Filtered Data
● Need limited tuning space coverage

○ |generable| / |space|
○ Reduce, not eliminate

● Specificity matches optimal area
○ Minimize divergence

■ Top-10% optimal configs
■ Top-X% training data

○ Lower divergence = better match
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Filtering: Out with the Bad
● Filter source data via observed quantiles

○ Remove poor features
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Filtering: Preserve Sufficient Coverage
● Filter source data via observed quantiles

○ Remove poor features
● Careful! Do not filter too much!

○ Keep top 15+%
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Filtering: Empirical Ideal
● Filter source data via observed quantiles

○ Remove poor features
● Careful! Do not filter too much!

○ Keep top 15+%
● Suggest top 30%

○ Sufficient but minimized space 
coverage

○ Divergence not increasing too much
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Budget Estimation: Probability of Success
● Hypergeometric sampling (blind marble picking):

○ |C| configurations (marbles)
■ |I| near-optimal (red marbles)

○ Up to k samples
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Budget Estimation: Probability of Success
● Hypergeometric sampling (blind marble picking):

○ |C| configurations (marbles)
■ |I| near-optimal (red marbles)

○ Up to k samples
● Incomplete coverage from GC

○ Remove marbles before sampling!
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Budget Estimation: Probability of Success
● Hypergeometric sampling (blind marble picking):

○ |C| configurations (marbles)
■ |I| near-optimal (red marbles)

○ Up to k samples
● Incomplete coverage from GC

○ Remove marbles before sampling!
● Probability estimation

○ Unique GC samples are proxy for |C|
○ Estimate reduction in |I|

102

Unique GC Samples



Experiment Design
● Evaluation Platform: ANL LCRC Swing Cluster

○ 2✕  AMD EPYC 7742 (64-core; 128-logical)
○ 1✕  40 GB NVIDIA A100
○ Clang with Polly LLVM loop optimizer

● Each application source sizes:
○ Bayesian Optimization with Random Forest
○ 200✕ each for Small, Medium, Large

● Each application target sizes:
○ 30✕ each for Small-Medium, Medium-Large, Extra-Large
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Tuning Spaces and GC Coverage
● Coverage represents reasonable # unique samples attainable
● Budget based on hypergeometric sampling with 5% regret and 95% 

confidence in 1+ samples in top-10%
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Compared Approaches
● Baseline

○ Parameters derived from original source
○ Reference for speedup

● Bayesian Optimization (BO)
○ From scratch without TL; same settings as training dataset

● All TL use the same prior dataset from BO
○ GPTune DTLA

■ SOTA TL autotuner using Gaussian Processes
○ GC-TLA (ours)

■ Fit to top-30% source data; conditionally sample for TL
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Tuned Parameters for Input-Scaling GC
● Polybench

● ECP
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Some Polybench Spaces are Difficult
● GC still comparatively excels
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ECP Demonstrates Sophistication
● Speedup is difficult!!
● GC’s best results 

achieved on-budget
● GC continues to succeed 

with complex spaces
● Worst margin of 

performance is -0.02✕ 
speedup
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Continued Success with Greater Complexity
● Better budget result in less time than prior work
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Exhaustive Quality on Syr2k XL Benchmark
● Higher average quality 

than GPTune
● Same high-quality 

results
● Immediate access
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Extending to Multi-Scale Tuning
● Usually larger problems are handed to larger-scale systems

○ Weak scaling
● Greater complexity in tuning

○ Search space grows as hardware changes
○ More performance inflection points
○ Higher co-dependency between parameters
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Multi-Scale Benchmark
● Highly Efficient Fast Fourier Transform 

for Exascale
○ Leverage many GPUs
○ Network bottleneck
○ Performance tuning required

● Desire maximum throughput
● Scale 2→32 Nodes (4 GPUs/Node)

○ 9.6k → 124.4k configurations
○ Weak-scaled FFT volume
○ Learn hardware & task size 

simultaneously
112



Multi-Scale Tuning Tasks
● Performance range in GFLOP/s

○ Spans all evaluations from all techniques
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heFFTe Tuning Space
● Precision

○ Single, double
● Reordering

○ Enabled, disabled
● MPI Communcation Strategy

○ All-to-All, All-to-All-v, Peer-to-Peer, Peer-to-Peer with Pipelining
● Reshaping

○ Pencils, slabs
● Conversion

○ Complex / Real
● MPI Topology

○ Hardware dependent, but VIRTUAL implementation 114



Full Multi-Scale Results
● GCTLA typically exceeded by GCTLA/BO random

○ GPTune’s best also frequently random
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