
A Systemic Approach to Maximize
Heterogeneous System

Performance

PhD Candidate: Thomas Randall

Dissertation Committee: Rong Ge (Chair), Prasanna
Balaprakash, Xingfu Wu, Kai Liu, Feng Luo

Acknowledgements
“FULL-W2V: Fully Exploiting Data Reuse for W2V on GPU-Accelerated Systems” BEST PAPER in the
Proceedings of the International Conference on Supercomputing 2021; Thomas Randall, Tyler Allen, and Rong Ge

“Transfer-learning-based Autotuning using Gaussian Copula” in the Proceedings of the International Conference
on Supercomputing 2023; Thomas Randall, Jaehoon Koo, Brice Videau, Michael Kruse, Xingfu Wu, Paul Hovland,
Mary Hall, Rong Ge, Prasanna Balaprakash

“Copy Cat: Limitations of LLMs in Performance Predictions,” Poster appearing in Department of Energy
Cybersecurity and Technology Innovation 2024; Thomas Randall, Rong Ge and Prasanna Balprakash

“Thermal Behaviors in Liquid Immersion Cooling under Various Workloads: a Case Study” in the Proceedings of
the International Green and Sustainable Computing Conference 2024; Thomas Randall, Bennett Cooper, Naman
Kulshreshtha, and Rong Ge

“Is In-Context Learning Feasible for HPC Performance Autotuning?” to appear in HPC for AI Foundation Models &
LLMs for Science 2025 as part of IPDPS 2025; Thomas Randall, Akhilesh Bondapalli, Rong Ge, and Prasanna
Balaprakash

2

Outline
● Background and Overview
● Systemic Approach

○ Hardware
○ Software
○ Tuning

● Concluding Discussion
● Q&A

3

Systemic Approach
● New hardware creates new opportunities

● Ensure software leverages available performance
● Tune their integration for optimal results

4

Target Environments
● Focus on High Performance Computing (HPC)

○ Cloud / Hyperscalers / Government

5

Why Do We Need It?
● Evolving landscape

○ From single core to GPU-accelerated
● Strong foundation

○ “Golden Age” of Microarchitecture
○ Mature practices
○ Years of expertise

● Future demand
○ New opportunities
○ Re-learning old tricks
○ Expert efforts don’t scale

6

Goals and Challenges
● Increase Hardware & Software synergy

○ Not always intuitive
○ Trade offs

● Prepare with flexibility in mind
○ Allow future improvement

● Minimal cost for maximum benefit
○ Near-infinite maximum cost

7

Core Components and Contributions
● Hardware

○ Increased cooling demand
○ Understand SPLIC technology via benchmarks
○ First study on applications

● Software
○ Underperforming hardware capability
○ Redesign for acceleration
○ Extend optimizations through hardware generations

● Tuning
○ “Glue” holds everything together
○ Novel transfer learning technique
○ Predict & improve low cost knowledge re-use
○

8

Significance and Impact
● Hardware

○ Identify real problems and opportunities
○ Trade-off thermal capacity / responsiveness

● Software
○ Reduce memory traffic 89% vs SOTA
○ 5.72-6.51x speedup across hardware generations

● Tuning
○ 12.81x additional speedup over SOTA
○ Predictable success and failure conditions

9

Outline
● Background and Overview
● Systemic Approach

○ Hardware
■ “Thermal Behaviors in Liquid Immersion Cooling under Various

Workloads: a Case Study” in the Proceedings of the International
Green and Sustainable Computing Conference 2024

○ Software
○ Tuning

● Concluding Discussion
● Q&A

10

Accelerators Demand
● Electric power → heat

○ Sacrifice performance or $

● 25 years → KW-scale TDPs!

● Air’s capacity is exhausted
○ Need better cooling

11

Voodoo3 3500 TV AGP
1999, 15 Watts TDP

NVIDIA H100 GPU
2024, 350 Watts TDP

Single Phase Liquid Immersion Cooling
● Direct contact with hardware

○ Dielectric
○ Efficient heat exchange
○ Recirculate coolant

■ No evaporation

● Large industry focus

12

Previous Studies
● Foundational effectiveness
● Design and properties of fluid
● Amount/arrangement of pumps
● Effects of long-term immersion on hardware
● Capital & Maintenance costs

● Lack understanding of:
○ Practical hotspots and behavior
○ Capacity vs Responsiveness
○ Range of operating conditions

13

Empirical Study
● Submer SmartPod v3

○ White mineral oil
○ 11C facility water

● Traditional air-cooled rack
○ Similar hardware setup
○ 23C air

● Observing thermal behaviors
○ Under variety of HPC workload

conditions
○ Heat exchange within the

system, components
14

Metrics & Benchmarks

15

● Node-level
○ Temperatures
○ Overall power draw

● GPU Accelerators
○ Temperatures
○ Power usage

● SPLIC Tank
○ Coolant & water temperatures,

flow rates
○ Pump RPM

● Estimate
○ Cooling-induced energy

Limitations of Air
● Always cooling (safety)
● Minutes to cool temperatures
● Lower thermal capacity

○ Can’t move much more
heat

● Well-tuned, approaching
limits
○ Dated GPU hardware

16

Everything Affected Similarly

17● Normal SPLIC operation

Possible Risk to Hardware

18● No chilled water while applications run

Energy Efficiency Not Guaranteed
● Passive cycles waste power

○ Low thermal burden
○ +15 kJ CUDA Stream
○ +19 kJ HPL

● Peak dissipation more power efficient
○ High thermal burden
○ -4 kJ CUDA DGEMM
○ -7 kJ NPB EP

● Tuning required

19

Takeaways
● Coolant equally distributes heat
● SPLIC has delayed responses, possibly wasted energy!

○ Requires tuning
● Compute introduces most heat

○ Other components may be hotter!
● Air limited by capacity

20

Outline
● Background and Overview
● Systemic Approach

○ Hardware
○ Software

■ “FULL-W2V: Fully Exploiting Data Reuse for W2V on
GPU-Accelerated Systems” BEST PAPER in the Proceedings of the
International Conference on Supercomputing 2021

○ Tuning
● Concluding Discussion
● Q&A

21

Word2Vec: CPU > GPU?
● 3 layer neural network

○ Words w → d-dimensional embeddings e
● Data-intensive GPU ports

○ Suboptimal usage of memory hierarchy
○ We improve fundamental approach to hardware

22

Context windows include adjacent words

 context1 Target context2 context3 (too far)

Word2Vec: CPU > GPU?
● 3 layer neural network

○ Words w → d-dimensional embeddings e
● Data-intensive GPU ports

○ Suboptimal usage of memory hierarchy
○ We improve fundamental approach to hardware

23

Context windows include adjacent words

 context1 Target context2 context3 (too far)random

unrelated

contrast

“negatives”

tiger

Core Problems for GPUs
● Low computational intensity

○ Small matrices
○ Low reuse

● High cost of memory latency
○ Cache-averse behaviors
○ No locality between matrices

● Preserve embedding quality
○ Extra parallelism → threaten

convergence?

24

Context:
(10x128)

Negatives:
(6x128)

x

Updates:
(16x128)

=

GPU
Memory

Independence of Negative Samples
● Challenge: Random selections

○ Cache misses!

25

Context

include

adjacent

Context

random

unrelated

tiger

“negatives”

contrast

Independence of Negative Samples
● Challenge: Random selections

○ Cache misses!

26

include

adjacent

Context
“negatives”

contrast

tiger

unrelated

randomContext

Independence of Negative Samples
● Challenge: Random selections

○ Cache misses!
● Opportunity: Reusable data

27

Context

include

adjacent

Context

random

unrelated

tiger

“negatives”

contrast

Independence of Negative Samples
● Challenge: Random selections

○ Cache misses!
● Opportunity: Reusable data

○ Random = independent order

28

Context

include

adjacent

Context

random

unrelated

tiger

“negatives”

contrast

Independence of Negative Samples
● Challenge: Random selections

○ Cache misses!
● Opportunity: Reusable data

○ Random = independent order

29

Context

include

adjacent

Context

random

unrelated

tiger

“negatives”

contrast

● Benefits
○ Fine-grain parallelism
○ Maximize register usage
○ Interleave computation & latency

Lifetime Reuse of Context Words

30

Context windows include adjacent words

Context windows include adjacent words

Context windows wordsinclude adjacent

Context windows wordsinclude adjacent

Context windows include adjacent words

● Context words reappear
○ Explicitly cache for full duration

Processing
order

Lifetime Reuse of Context Words
● Context words reappear

○ Explicitly cache for full duration

31

Context windows include adjacent words

Context windows include

Current Window:

GPU Shared
Memory:

Context windows include adjacent words

Lifetime Reuse of Context Words

32
Context windows include adjacent words

Context windows include adjacent

Current Window:

Previous Window:

● Context words reappear
○ Explicitly cache for full duration

GPU Shared
Memory:

Context windows include adjacent words

Lifetime Reuse of Context Words

33
Context windows include adjacent words

Context windows include adjacent words

Current Window:

Previous Window:

● Context words reappear
○ Explicitly cache for full duration

● Benefits
○ High cache hit rate
○ 89% R/W reduction

GPU Shared
Memory:

CPU Becomes Bottleneck
● Heterogeneous requirements

○ Reduce syscalls
○ String conversion

● 12.4–15.9X peak throughput increase
○ Text8 for throughput; 1bw for semantic quality

34

Highest Throughput Across Generations
● Independence of Negative Samples (INS)

○ 5.12X faster than CPU on TitanXP
● INS + Lifetime Reuse of Context Words

○ Up to 6.51X faster than CPU (all architectures)

35(INS only)(INS + LRCW) Prior SOTA GPUs Prior SOTA CPUs

Takeaways
● Massive throughput improvements

○ Better alignment
○ Deep understanding necessary

● Benefit multiple HW generations
○ Register file and shared memory sizes increased
○ Memory latency bottleneck more important

36

Outline
● Background and Overview
● Systemic Approach

○ Hardware
○ Software
○ Tuning

■ “Transfer-learning-based Autotuning using Gaussian Copula” in the
Proceedings of the International Conference on Supercomputing
2023

● Concluding Discussion
● Q&A

37

Put it Together
● Tuning is balancing trade-offs
● Best-performing configuration

○ Speedup / energy / latency /
precision…

○ Often by an order of magnitude
● Long tail benefits

● Yet, not everything is tuned

38

Cost of Tuning
● Small simple kernel

○ 25 seconds to compile and measure
● Simple tuning space

○ Ten source code parameters
○ 10,000+ combinations, easily

● Exhaustive cost
○ 100+ days of serial compute
○ What if I have different input?
○ What if I have 10,000 machines?

39

100

Opportunity for Reuse
● HPC applications tune multiple scales
● Transfer improves efficiency of tuning

○ Less resources
○ Still close to optimal

● Existing transfer techniques
○ Require calibration
○ Regression needs big data
○ Under-utilized

40

1 GB

1 PB

Gaussian Copula (GC) TL-Based Autotuning
● Probabilistic model

● Maximize few-shot between tasks
○ Common in HPC

● Transfer without regression
○ Reduce cost

■ Less data
■ Immediate performance

○ Estimate success
■ Prior to evaluations

41

GC Few-Shot TL Autotuning
● Fit space and prior task data

42

GC Few-Shot TL Autotuning
● Fit space and prior task data

○ Prompt with new task

43

GC Few-Shot TL Autotuning
● Fit space and prior task data

○ Prompt with new task
○ Generate evaluation

candidates

44

GC Few-Shot TL Autotuning
● Fit space and prior task data

○ Prompt with new task
○ Generate evaluation

candidates

● Demonstrate on benchmarks
○ 64% peak in one shot
○ 12.81✕ higher peak (20.58

✕→33.39✕) vs previous
SOTA

45

Distributions as Search
● GC lacks regression

○ No comparisons/ranking
○ Minimal data = distribution

46

Ideal subset

Search Space

Distributions as Search
● GC lacks regression

○ No comparisons/ranking
○ Minimal data = distribution

● Provide search boundaries
○ Under-represented = Poor traits
○ Over-represented = Solved traits
○ Variance = Opportunity to explore

47

poor

poor

poor

good

poor

good

good

Distributions as Search
● GC lacks regression

○ No comparisons/ranking
○ Minimal data = distribution

● Provide search boundaries
○ Under-represented = Poor traits
○ Over-represented = Solved traits
○ Variance = Opportunity to explore

● Probability estimate
○ Predict # evaluations

48

poor

poor

poor

good

poor

good

good

Conditional Sampling as Transfer
● Different scales require different

solutions
○ Impose constraint

49

Conditional Sampling as Transfer
● Different scales require different

solutions
○ Impose constraint

● Other marginals adjusted
○ All data recontextualized

50

Conditional Sampling as Transfer
● Different scales require different

solutions
○ Impose constraint

● Other marginals adjusted
○ All data recontextualized

● Sample from distribution
○ No wasted samples

51

Immediate Performance
● Polybench Applications

○ Linear Algebra, Image
Processing, Stencils, Data
Mining

● 3mm XL: 12.81✕ more
speedup than prior SOTA

52

Immediate Performance
● Polybench Applications

○ Linear Algebra, Image
Processing, Stencils, Data
Mining

● 3mm XL: +12.81✕ more
speedup than prior SOTA

● GC exceeds prior SOTA
performance

○ 1st evaluation: 44%
○ Within budget: 78%

● Worst margin of performance
is -0.24✕ speedup

53

Consistently Better
● GC selects better configuration than prior work almost every single evaluation

54

Limited By Complexity

● heFFTe: Exascale benchmark application
● Most learning must be performed on-task

55

Explaining Failure
● Knowledge has low utility

○ Tasks change too much
○ Dependent & complex variable

relationships
● GCTLA’s budget and correlation warn!

○ No budget
○ No correlation despite expectation

● Warning, not solution
○ More training data?
○ Train from scratch?

56

Outline
● Background and Overview
● Systemic Approach

○ Hardware
○ Software
○ Tuning

● Concluding Discussion
● Q&A

57

Summary and Broader Impacts
● Exciting hardware

○ Improve thermal management within HPC
○ Develop designs together

● Effective software
○ Leverage deep understanding
○ Performance scaling to hardware

● Practical tuning
○ Novel technique effective with minimal data
○ Broader utilization, greater clarity

58

Future Works (Science is never “done” ™)
● Hardware

○ Full accounting of water and energy
○ Effectiveness of forced induction
○ Firmware adaptation for better demand response

● Software
○ Locality between applications and BLAS
○ Determining maximum extent of reuse
○ New application domains

● Tuning
○ Other probability models
○ Supporting model paradigms
○ Multi-scale tuning remains challenging! 59

Funding Acknowledgements
Portions of this material were supported by the National Science Foundation under
Grant Nos. MRI# 2024205, MRI# 1725573, and CRI# 2010270; as well as Grants
CNS-CCF-1942182, CNS-1551262, and CCF-1551511.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science Foundation.

Clemson University is acknowledged for generous allotment of compute time on
the Palmetto Cluster.

Portions of this material were supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of
Science and the National Nuclear Security Administration.

60

Backup Slides!

61

Direct Liquid Cooling
● Circulate liquid via cold plates

○ Microchannels
● Simple in-rack setup

○ More efficient with hotter fluid
● Fluid completely contained

○ Safety for components
○ Minor effectiveness loss
○ Low maintenance overhead

62

Dual Phase Immersion Cooling

63

● Physics-driven heat
transfer

● No moving parts
● Gas complicates

maintenance & safety
● Fluids not eco friendly
● Nonzero risk of

combustion!

Issues of energy and efficiency
● LBNL: ~2% US electricity in data centers

○ International Energy Agency: Europe ~1.5%
● McKinsey & Company: 40% data center energy for cooling

○ +10% year-over-year
● Air-based cooling won’t grow

○ Current GPUs throttle
○ kW-scale TDPs melt

● Water conducts 30x more heat per unit volume

64

Hardware Preparation
● Remove

○ Thermal paste
○ Fans from power supply,

motherboard
● Add

○ Indium foil
● Be careful!

○ Ethernet & power cables

65

● Immersion can be a one-way trip
○ Some hardware is

immersion-only
● Near-identical servers in air-cooled

rack/cabinet
○ Fans in chassis
○ Rear door heat exchange

Air-Cooled Replica Server

66

SPLIC and Air-cooled Evaluation Platforms
● Right: SPLIC
● Bottom: Air-cooled

67

Thermal Deltas by Hardware Component
● Compute drives heat

○ Only GPU risks thermal
● Air is somewhat uniform

○ CPUs heat up 1.3X faster
than SPLIC

○ GPUs heat up 1.2X slower
than SPLIC

68

Inconsistent, Improving Efficiency
● Pumps reduce hotter coolant temperature more
● Many ineffective periods

69

Compute Used > Device Used
● Lower values = faster heat accumulation

70

Little Performance Deviations

71

Energy Efficiency Not Guaranteed
● Passive cycles waste power

○ +15 kJ CUDA Stream
○ +19 kJ HPL

● Peak dissipation more power efficient
○ -4 kJ CUDA DGEMM
○ -7 kJ NPB EP

● Known theoretically 1

○ +1.6x heat capacity, +6.5x thermal conductivity
○ +100x viscosity, +693x denser

● Tuning required

72
1 Jimil M. Shah et al. “Evaluating the Reliability of Passive Server Components for Single-Phase Immersion Cooling” ASME Journal of

Electronic Packaging Volume 144 Issue 2

Why Optimize Word2Vec?
● Repeated usage

○ Larger dataset → richer model
○ Pretraining not always enough
○ Language evolution: more training

● Ripe for GPU acceleration
○ Embarrassingly parallel
○ Simple network architecture
○ … CPUs were faster!!

73

Car

Drive

Taxi

Drip

Dog
Ball

Suboptimal GPU Performance
● Optimizations for K40 GPUs (2013) failed to

continue scaling performance
● CPUs maintained general performance

advantage

74

Hardware Platform pWord2Vec (CPU)
Millions Words/Sec

Wombat (GPU)
Millions Words/Sec

Broadwell CPU, P100 GPU (2016) 10.36 2.86

Haswell CPU, TitanXP GPU (2017) 8.4 3.3

Skylake CPU, V100 GPU (2018) 9.32 10.33

Bird’s Eye View of Algorithm
● Text is decomposed into “sentences”

○ Embarrassingly parallel
● Sentences are composed of context windows

○ Words close enough for association
○ Serial order necessary for convergence and correctness

● Noise-contrastive samples (negatives) for each context window
○ Positively correlate words within the window
○ Negatively correlate spurious selection of words

75

FULL-W2V Coordination and Decomposition

76

Comparing Memory Demand

77

In Depth Word2Vec Memory Demand
● Gigabytes-per-epoch
● Primarily reduce L1 demand

○ Reuse in shared not reported by tool (all implementations)

78

Word2Vec Evaluation Platforms
● Span multiple CPU and GPU generations

79

Word2Vec Datasets and Evaluations
● Text8 benchmarks throughput over 20 epochs
● One Billion Words benchmarks quality after 5 epochs
● Quality measured by

○ Spearman’s rank correlation coefficient WS-353 and SimLex-999
○ Hyperwords analogy scores

80

Throughput on One Billion Words Corpus

81

Why Word2Vec Issues Better
● Better warp availability

○ Max active warps is 16 on both XP and V100

● Higher IPC / fewer stalls
○ Only comparable between HIGHLY similar implementations

82

Minimal Effects on Embedding Quality
● One Billion Words corpus
● Average over 5 repeated trials

83

(x,y)

Existing Approaches
● Grid search: simple

○ Fast and imprecise
○ Precision costs speed

● System modeling: generalize
○ Costly one-time setup
○ Inflexible

● Application-based ML: specialize
○ Need lots of data
○ High quality results

● Transfer learning: re-use knowledge
○ Reduce needed data

84

Practical Example of Tuning Costs

85

Rejection Sampling Costly
● Other generative techniques lack conditional sampling at considerable cost to

efficiency

86

Exploratory surrogate models
● BLISS, YTOPT, GPTune
● Surrogate represents known information and trend

○ Uncertainty measure
○ Iteratively explore & exploit

● Powerful efficiency, but restart from scratch
○ Need to leverage known data

87

Shortcomings of Prior TL
● Regression requires new data for calibration

○ Expensive restart
○ Random collection

● Machine-learning scales to BIG DATA
○ Desirable to use minimal data
○ Long-term convergence too slow
○ Limited improvement

● Primary gap:
○ Simple
○ Aggressive
○ Transferrable

88

GC Model
● Multivariate probability distribution

89

GC Model
● Multivariate probability distribution
● Components

○ Disjoint marginal per variable

90

GC Model
● Multivariate probability distribution
● Components

○ Disjoint marginal per variable
○ Correlations as joint distribution

91

GC Model
● Multivariate probability distribution
● Components

○ Disjoint marginal per variable
○ Correlations as joint distribution

● Capabilities
○ Samples ↔ Distributions
○ Conditional sampling

92

“Good” Distribution from Filtered Data
● Need limited tuning space coverage

○ |generable| / |space|
○ Reduce, not eliminate

93

“Good” Distribution from Filtered Data
● Need limited tuning space coverage

○ |generable| / |space|
○ Reduce, not eliminate

● Specificity matches optimal area
○ Minimize divergence

■ Top-10% optimal configs
■ Top-X% training data

○ Lower divergence = better match

94

Filtering: Out with the Bad
● Filter source data via observed quantiles

○ Remove poor features

95

Filtering: Preserve Sufficient Coverage
● Filter source data via observed quantiles

○ Remove poor features
● Careful! Do not filter too much!

○ Keep top 15+%

96

Filtering: Empirical Ideal
● Filter source data via observed quantiles

○ Remove poor features
● Careful! Do not filter too much!

○ Keep top 15+%
● Suggest top 30%

○ Sufficient but minimized space
coverage

○ Divergence not increasing too much

97

Budget Estimation: Probability of Success
● Hypergeometric sampling (blind marble picking):

○ |C| configurations (marbles)
■ |I| near-optimal (red marbles)

○ Up to k samples

98

|C|

Budget Estimation: Probability of Success
● Hypergeometric sampling (blind marble picking):

○ |C| configurations (marbles)
■ |I| near-optimal (red marbles)

○ Up to k samples

99

|C|
|I|

Budget Estimation: Probability of Success
● Hypergeometric sampling (blind marble picking):

○ |C| configurations (marbles)
■ |I| near-optimal (red marbles)

○ Up to k samplesk

100

|C|
|I|

Budget Estimation: Probability of Success
● Hypergeometric sampling (blind marble picking):

○ |C| configurations (marbles)
■ |I| near-optimal (red marbles)

○ Up to k samples
● Incomplete coverage from GC

○ Remove marbles before sampling!

101

Budget Estimation: Probability of Success
● Hypergeometric sampling (blind marble picking):

○ |C| configurations (marbles)
■ |I| near-optimal (red marbles)

○ Up to k samples
● Incomplete coverage from GC

○ Remove marbles before sampling!
● Probability estimation

○ Unique GC samples are proxy for |C|
○ Estimate reduction in |I|

102

Unique GC Samples

Experiment Design
● Evaluation Platform: ANL LCRC Swing Cluster

○ 2✕ AMD EPYC 7742 (64-core; 128-logical)
○ 1✕ 40 GB NVIDIA A100
○ Clang with Polly LLVM loop optimizer

● Each application source sizes:
○ Bayesian Optimization with Random Forest
○ 200✕ each for Small, Medium, Large

● Each application target sizes:
○ 30✕ each for Small-Medium, Medium-Large, Extra-Large

103

Tuning Spaces and GC Coverage
● Coverage represents reasonable # unique samples attainable
● Budget based on hypergeometric sampling with 5% regret and 95%

confidence in 1+ samples in top-10%

104

Compared Approaches
● Baseline

○ Parameters derived from original source
○ Reference for speedup

● Bayesian Optimization (BO)
○ From scratch without TL; same settings as training dataset

● All TL use the same prior dataset from BO
○ GPTune DTLA

■ SOTA TL autotuner using Gaussian Processes
○ GC-TLA (ours)

■ Fit to top-30% source data; conditionally sample for TL

105

Tuned Parameters for Input-Scaling GC
● Polybench

● ECP

106

Some Polybench Spaces are Difficult
● GC still comparatively excels

107

ECP Demonstrates Sophistication
● Speedup is difficult!!
● GC’s best results

achieved on-budget
● GC continues to succeed

with complex spaces
● Worst margin of

performance is -0.02✕
speedup

108

Continued Success with Greater Complexity
● Better budget result in less time than prior work

109

Exhaustive Quality on Syr2k XL Benchmark
● Higher average quality

than GPTune
● Same high-quality

results
● Immediate access

110

Extending to Multi-Scale Tuning
● Usually larger problems are handed to larger-scale systems

○ Weak scaling
● Greater complexity in tuning

○ Search space grows as hardware changes
○ More performance inflection points
○ Higher co-dependency between parameters

111

Multi-Scale Benchmark
● Highly Efficient Fast Fourier Transform

for Exascale
○ Leverage many GPUs
○ Network bottleneck
○ Performance tuning required

● Desire maximum throughput
● Scale 2→32 Nodes (4 GPUs/Node)

○ 9.6k → 124.4k configurations
○ Weak-scaled FFT volume
○ Learn hardware & task size

simultaneously
112

Multi-Scale Tuning Tasks
● Performance range in GFLOP/s

○ Spans all evaluations from all techniques

113

heFFTe Tuning Space
● Precision

○ Single, double
● Reordering

○ Enabled, disabled
● MPI Communcation Strategy

○ All-to-All, All-to-All-v, Peer-to-Peer, Peer-to-Peer with Pipelining
● Reshaping

○ Pencils, slabs
● Conversion

○ Complex / Real
● MPI Topology

○ Hardware dependent, but VIRTUAL implementation 114

Full Multi-Scale Results
● GCTLA typically exceeded by GCTLA/BO random

○ GPTune’s best also frequently random

115

