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Plain Language Abstract

My research focuses on maximizing the performance of some of the world’s biggest applica-
tions running on the world’s biggest computers. These machines are so large and complicated that
it takes dedicated efforts to get the biggest bang for your buck (and these machines aren’t cheap, so
we really want it!). The research in this dissertation is composed of three connected parts: How do
we measure the opportunities provided to us by new hardware? How do we design our applications
to reduce the need to re-design them as hardware improves? How do we configure our hardware and
software to work together as effectively as possible?

I provide deep insights into the opportunities that we can leverage right now to prepare us
for future developments. This means that we can extend the lifetime of our efforts and solve new and
bigger problems instead of just struggling to keep up with the problems that we’re already working
on. When applied in the United States Department of Energy, this means that my research helps
other scientists do their work faster and with less taxpayer dollars footing the bill for energy and
computer maintenance. My research also supports smaller organizations who many not have the
expertise, manpower or resources to optimize every tiny detail. My research in performance tuning
delivers results quickly with a known lower bound even when there isn’t a lot of data to work with,

making it easier for everyone to get the most of new computing technologies.
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Abstract

Continuous increases in high performance computing (HPC) throughput have served as cat-
alysts for industry and scientific advancement in countless manners that have fundamentally shaped
our modern world. Our demands on compute resources continue to scale, but the limitations of
Ahmdal’s law and Dennard scaling have proven increasingly difficult to overcome when approached
solely through hardware or software design. Furthermore, even on the most advanced supercomput-
ers, many HPC applications fail to utilize the collective system’s performance.

However, the resurgence of Al in industry has promoted an explosion of hardware and
software codesign that have fueled massive improvements in GPU design and novel ASICs. These
performance improvements are maximized on a broad variety of heterogeneous systems by specially
tuning applications. Mimicking these developments across the whole of computing will require
similarly holistic approaches combining specialty hardware, software that caters its design to the
greatest strength of hardware, and fine-tuning on individual systems to truly maximize performance.

We use three distinct perspectives to holistically address scalable system performance. We
analyze the impacts of liquid immersion cooling technologies on sustained application performance
and energy efficiency. Next, we present a case study where intentional algorithmic redesign for GPU
acceleration permits robust performance improvements that endure through multiple generations of
hardware. We find that memory latency forms a primary bottleneck for GPU-accelerated perfor-
mance and demonstrate how algorithm-specific optimizations can greatly improve performance over
multiple architecture generations. Finally, we tie these concepts together in the form of performance
optimization techniques that respect both software- and hardware-based performance constraints.
We improve the re-usability of performance insights with novel transfer learning techniques that
make the cost of performance optimization more predictable and more successful in the short-term.

Our insights demonstrate the necessity of systemic approaches for performance tuning in HPC.
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Chapter 1

Introduction

Building and operating supercomputers are massive undertakings that ultimately fall short
of expectations wherever the hardware and software are not well-aligned. The ever-growing com-
plexity of novel hardware and advanced software necessitate sophisticated solutions for both new

and old problems that limit performance.

Effective optimizations must be designed against the actual constraints that
limit performance; maximizing heterogeneous performance requires optimization of

hardware, software, and their integration.

While decades of research have already dedicated significant efforts to improve system per-
formance, the so-called “golden age of computer architectures” [1] has dramatically accelerated both
the raw throughput of data computation and the complications of efforts to efficiently utilize hard-
ware. CPU hierarchies are well-understood and GPU hardware have matured over time, but the
rapid evolution of system design has left many heterogeneous systems regularly underperforming
their theoretical peaks. Continual large-scale government and industry investments in specialized
hardware for artificial intelligence, machine learning, cloud infrastructure and datacenter technolo-
gies have vastly outpaced our ability to maximize the utilization of these systems.

Many advancements in specialized hardware have been accompanied by increasing power
consumption and thermal waste, raising legitimate concerns about the energy efficiency and envi-
ronmental impacts of current and future large-scale computing. We also observe many applications

failing to improve key metric performance at the rate of new hardware acquisition, suggesting un-



fortunate mismatches between software design and hardware implementation that are inefficiently
addressed by newer technologies. Finally, we observe the largest gap in system performance is cre-
ated by the immense efforts needed versus finite resources allocated for performance tuning. Even
when efforts are made to facilitate the usage of new hardware with existing software, performance
improvements remain lackluster compared to the cost of acquisition.

In this work, we tackle the larger problem of overall heterogeneous system performance by
considering its three components: opportunities presented by hardware, methods by which software
leverages these opportunities and automatic performance optimization to ensure that hardware is
best-used by software.

Chapter 3 explores the performance opportunities provided to systems based on novel hard-
ware in the form of a case study. We analyze the impacts of a Single-Phase Liquid Immersion Cooling
(SPLIC) technology on cooling to determine how current and future applications may adapt to dif-
ferent physical constraints provided by this environment.

Chapter 4 demonstrates the complexity of designing software to properly exploit available
performance across many generations of accelerator hardware through the lens of GPU implemen-
tations of the Word2Vec algorithm. We optimize Word2Vec performance on GPU accelerators to
permit automatic performance improvements from successive hardware generations that have been
neglected in prior work, remedying a history of poor GPU utilization that was previously outmatched
by CPU implementations.

Chapter 5 unites these perspectives of hardware- and software- based optimization through
automatic empirical performance tuning, also known as performance autotuning. Once performance
opportunities are known, the process of tuning available interfaces for maximal impact is nontrivial.
Existing performance autotuning has limited capability to exploit prior knowledge and is forced to
waste some empirical samples when tuning related problems. We identify a novel transfer tuning
technique that immediately leverages prior knowledge to access near-optimal areas of tuning search
spaces, allowing practitioners to expand the scope and utilization of autotuning to applications at
low and predictable cost.

The greatest opportunities for performance improvement are driven by understandings of
all technologies in a system and their joint interactions. This work presents both the current-day
challenges and future opportunities of heterogeneous system optimization at all levels: hardware,

software and integration. By properly combining these techniques, a holistic view of heterogeneous



system performance permits the greatest impact to exceed the current boundaries of excellence in

computing performance.



Chapter 2

Background

In this chapter, we provide supplementary knowledge that spans each of the components of
our work. This includes an overview of SPLIC technology, the Word2Vec algorithm, and general

concepts in performance autotuning.

2.1 SPLIC Technologies

One of the major ways to iteratively improve performance through hardware is to increase
the density of computing components. However, denser circuitry increases the power density of the
components and reduces cooling effectiveness for components such as those deeper within 3D dies,
resulting in greater thermal accumulation within the hardware [2]. At the extreme scale, high heat
can damage computing hardware and render it inoperable [3], creating a design limitation known
as Dennard scaling [4]. To prevent such damage, thermal sensors in critical hotspots automatically
trigger a decrease in the clock rate of devices to limit additional energy before the device becomes
temporarily or permanently inoperable. To ensure performance and throughput, HPC and datacen-
ter systems that push thermal limits require sophisticated cooling solutions. These solutions permit
maximal usage for the longest possible period without detrimentally lowering clock rates or causing
device failures.

Despite continued innovation in air-cooling technology, air is simply not dense enough to
maintain pace dissipating heat from modern HPC and datacenter systems, let alone future de-

signs that are predicted to only increase in Thermal Design Power (TDP). With nearly half of all



datacenter energy devoted to cooling hardware and datacenters accounting for 2% of U.S. energy
consumption [5], liquid-based cooling technologies are promising and necessary for continued growth
and innovation in computing. There are several different approaches to liquid-based cooling, includ-
ing Direct Liquid Cooling (DLC) and Single- and Dual- Phase Liquid Immersion Cooling (SPLIC
and DPLIC, respectively). As immersion cooling methods, the use of DPLIC or SPLIC require far
more modifications and planning than DLC. At the time of writing, DPLIC has less favor and adop-
tion within industry start-ups. This is partially due to concerns about the environmental impacts of
currently available choices for DPLIC coolants and the relative degree of risks involved in containing
gases as opposed to liquids used in SPLIC. We limit the focus of our discussion to SPLIC as the
most prominently growing immersion cooling technology for the nearer future.

SPLIC has different cooling mechanisms, controls, and operational capabilities compared
to air cooling. Circulation is induced to reach a temperature equilibrium over the entire fluid vol-
ume faster and to facilitate more effective heat exchange. The heat exchange is performed with
chilled water from the facility; the fluids exchange heat while pumped through thermally conductive
material (such as copper pipes). In comparison to Direct Liquid Cooling (DLC) [6, 7], immersion
cooling affects all computing components rather than just the areas covered by cold plates where
liquid is always flowing. SPLIC systems have high energy-efficiency because the pumps only activate
periodically to circulate fluid or while the coolant temperature exceeds a set point. Unlike air cool-
ing, which directly monitors computer hardware components and responds to their temperatures,
SPLIC monitors the temperatures of the coolant and water entering and leaving the heat exchange
within the tank. This approach to thermal monitoring is physically removed from the computing
components, which inherently delays the system’s response to heat accumulation within computing
hardware. Therefore, understanding the actual impacts of this cooling technology on different hard-
ware and software workloads is important for evaluating its utility and design implications beyond

mere hardware configuration.

2.2 The Word2Vec Network and Training Algorithm

Word2Vec is a three-layer artificial neural network that learns to represent all words in a
vocabulary V as d-dimensional vectors v € R? based on their usage in a set of sentences. These

vectors are known as word embeddings and were of critical importance in developing the Natural



Language Processing (NLP) community’s machine-learning approach, laying the groundwork for its
successor in the transformer neural network architecture. Well-constructed word embeddings can
reveal meaningful expressions of syntactic and semantic relationships between words. For instance,
distance(Veat, Vdog) < distance(Veat, Vhammer) indicates that the word “cat” is more similar in mean-
ing to “dog” than “hammer,” and various verb tenses of the same word appear clustered in R? to
indicate similar syntactic uses. While transformers were designed to leverage GPU acceleration,
Word2Vec and many other applications include implementations that are designed to benefit from
GPU acceleration but do not receive the broad community support needed to optimize model per-
formance. As such, time has proven that Word2Vec’s GPU performance was strongly bottlenecked
by limitations of the algorithm that proved adversarial to the hardware design. In Chapter 4, we
demonstrate how such algorithms can be effectively designed to benefit from multiple generations of
hardware. In this section, we provide the necessary background information about the Word2Vec
network and training algorithm to understand the core foundation of this optimization problem.

The Word2Vec neural network is trained via an unsupervised objective. This objective is
based on the fundamental hypothesis that words which appear nearby one another in human-written
text must contain some grammatical, syntactical, or semantic connection. Word2Vec provides two
different models of determining word proximity during training wherein the objective is to predict
the most likely individual word to “fill in the blank” or the most likely context to “surround the
blank”. The Continuous Bag-of-Words (CBOW) model architecture attempts to “fill in the blank,”
while the Continuous Skip-Gram with Negative Sampling (SGNS) model architecture trains in an
inverted fashion, attempting to “surround” a target word with a reconstruction of its context. Rogers
et al. [8] found that the SGNS model architecture generally produces higher quality embeddings for
downstream applications of interest, so we focus our attention on improving the performance of the
Continuous SGNS model architecture.

The abstract overview of the Word2Vec algorithm is as follows: A vocabulary of trainable
words V' is formed from all words in a corpus of trainable text. The input to Word2Vec consists of this
vocabulary of words and a corpus of those words organized into “sentences”. Within each sentence,
it is assumed that some meaningful relationship exists between nearby words. During training, the
contents of individual sentences are consumed from beginning to end using a sliding context window
of 2W “context” words where W is the window size, as shown in Figure 2.1. The center word is

the current “target” word that the model is being trained against. The SGNS training algorithm



Figure 2.1: An example context window (bordered blocks) of size W = 2 centered on target words in gray.
Most words are reused between successive context windows, providing predictable reuse opportunities.
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focuses on reproducing the context seen in training at inference time by increasing the similarity
of all context words to the target word. Such similarity is reflected in the vector representations
by making each context word’s vector more similar to the target word vector. The algorithm also
assumes that words not present in the context window are less related to the target word, and their
similarity to the target word is penalized. Rather than decreasing the similarity of all words not
included in the context window, SGNS randomly samples a small number N words using a weighted
distribution and makes them more dissimilar to the target word, hence the name “Continuous Skip-
Gram with Negative Sampling”. These “negatives”’ greatly reduce the data intensiveness of training
as N << |V|. Like other neural network models, SGNS yields a converging solution for word
embedding values with a sufficient number of iterations over the data set.

The context window size W and number N of negatives per word are typically defined
as hyperparameters in Word2Vec models. Mikolov et al [9, 10] established that W € [2,10] and
N € [2,20] are often sufficient for most datasets, accelerating training speed without reducing

embedding quality, and smaller values of N are more appropriate for larger datasets.

2.3 Performance Autotuning

Autotuning [11, 12, 13] is a process that efficiently evaluates a number of parameter con-
figurations from a user-defined parameterized kernel or application to optimize a given objective

such as performance (e.g., runtime, FLOPS). Here we provide a walkthrough with the Polybench



kernel [14] “3mm” as a concrete example of basic autotuning concepts. The kernel performs dense
matrix multiplication with four matrices A, B, C, D such that the output is (A x B) x (C x D).

Autotuning utilizes a finite budget (typically time or number of evaluations) to optimize a
relationship f(c;t) € R? between a given parameter configuration c, out of all possible configurations
C, a tuning task ¢, and d objective outputs such that argmax, f(c;t) Vc € C. Each task t is a
specific instance from a set of related tasks 7, which may have different configurations for optimum
performance. Each objective d is a real-valued metric that functionally depends on both the task
and parameters according to f(c;t). The exact closed form of f(c;t) is unknown but is assumed to
be a complex, nonlinear relationship.

An example task of tuning the 3mm kernel’s runtime performance involves n = 10 parame-
ters in the form of source code annotations that affect loop tile sizes (i.e., 4, 8, 32), loop interchanges
(the order loop iterators appear in nested loops), and memory management (the packing used for tile
memory structures). Each evaluation of the objective requires annotating the source with parame-
ter values, then compiling and executing it on the benchmark system to collect timing data, which
incurs considerable cost even for small input matrices. There are 376,320 unique combinations of
the ten parameters that define our tuning space for 3mm, which is prohibitively costly to brute-force
with empirical searches. Autotuning uses more intelligent approaches to identify the configurations
that achieve optimal performance.

Autotuning must differentiate input scales as different tasks because changing the input
scale frequently induces drastic changes in the optimum configuration. As shown in Table 2.1, small
sizes require the packed-array technique for matrices A and E, but medium-sized inputs do not.
The degree of improvement can also vary between input scales, where small 3mm inputs can gain
1.13x speedup from autotuning. However, medium-sized 3mm inputs gain 14.94x speedup over the

respective baselines.

2.3.1 Transfer Learning in Autotuning

Several search methods have been developed to reduce the number of evaluations required to
find the best configuration for autotuning tasks. They can be classified into model-based and model-
free methods. The former methods learn the relationship between the parameter configurations and
the objective function through an incrementally updated surrogate model and leverage it to cheaply

evaluate multiple points and minimize the number of actual evaluations. Examples include Bayesian

8



Table 2.1: Matrix input scales affect speedup and the best configurations for the 3SMM kernel.

Input Scale
Small | Medium | Large

Input Scale Characteristics
Array Dimensions < 80 <220 <1200
Naive Tera-Ops 0.037 4.75 2924.24
Worst Runtime (s) 0.00017 0.1096 9.8631

Best Configuration Values
Packed Arrays AEF F AB,E
Loop Interchanges N/A N/A Outer Exchange
Tile Sizes 16, 2048, 4 | 96, 16, 4 | 4, 2048, 4
Speedup Over Default | 1.13x 14.94 % 50.50x

optimization that employs Gaussian process regression and random forest and their variants. The
latter methods optimize the objective function without such models. Examples include random
search, grid search, genetic algorithms, and Nelder-—Mead. The key advantage of the model-based
methods is that they require significantly fewer evaluations than the model-free methods, especially
for large search spaces [12, 13, 15, 16].

TL in autotuning is an emerging approach that leverages data from one autotuning task
in related autotuning tasks to improve sample efficiency significantly. Related autotuning tasks
are common in HPC applications, which include tuning different input sizes of the same kernel or
application, tuning the same kernel across architectures, and tuning related kernels with the same
computational signature. While the best configurations are often different for different autotuning
tasks, TL is particularly effective when the related tasks share similar high-performing characteristics
in the search space. Model-based search methods are promising for TL because the model can be

pretrained or bootstrapped with the existing data from related tasks.



Chapter 3

Impacts of Immersion Cooling on

HPC Applications

3.1 Introduction

Hardware innovations have driven computing performance for decades, but the decline of
Moore’s Law and limitations of Dennard Scaling have lead to many new and exciting hardware
developments beyond merely scaling transistor counts. The densest computing components brush
against the limits of Dennard Scaling and are vulnerable to thermal damage that can limit chip
performance or terminate it entirely. As such, the importance of cooling hardware as a means of
supporting high-energy and high-throughput workloads has received much greater attention recently.

Many large-scale computer systems are transitioning or considering transitioning from air-
cooling solutions to liquid-cooling solutions. Thermodynamic physics dictate that newer, more
dense computing components will produce more thermal waste than air as a medium can physically
circulate — our computers will melt down or have to operate in degraded performance simply because
they’re too hot. As a denser physical medium, liquids can potentially improve over air in terms of
cooling efficiency and costs while possibly also improving computing hardware reliability. Single

Phase Liquid Immersion Cooling (SPLIC) is such a technology in which computing hardware is

Portions of this chapter are based on work that was originally published in the Proceedings of the International
Green and Sustainable Computing Conference 2024 under the title “Thermal Behaviors in Liquid Immersion Cooling
under Various Workloads: a Case Study”.
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completely submerged in a container filled with a dielectric coolant fluid. Compared to air, the
coolant medium is denser and has higher thermal conductivity and heat capacity. These properties
improve heat dissipation and permit more efficient heat recycling. Many benefits of SPLIC are well-
understood in theory, but the practical effects of the technology on real software workloads have not
been well-studied academically.

Previous studies generally examine the raw heat circulation properties of the coolant without
considerations for particular applications or hardware configurations. However, different hardware
components possess different power requirements and ranges and patterns of heat dissipation based
on the software they are executing. For example, processing units consume more power and have a
larger power range compared to memory devices and disk drives. Component power is also deter-
mined by the underlying hardware technologies; for instance, CPUs are generally less power efficient
than GPUs, and DDR memory devices are less power efficient than high-bandwidth memory (HBM)
devices for the same capacity. Finally, applications are the ultimate drivers of component utilization,
meaning that different kinds of applications produce different cooling requirements from the same
system. This means that the actual cooling demand of computing systems is highly variable across
different hardware and software configurations.

Cooling’s role in compute systems is to prevent damage to computing hardware and to reduce
or eliminate measures individual components utilize to prohibit damage, such as downclocking, which
ultimately cause performance losses. While most software applications operate blissfully unaware of
the thermal conditions of computing hardware, intense and long-running processes are well-known to
lead to performance degradation and faults that reduce or deny access to peak computing potential.
The real cooling demands required by a system for sustained performance are neither represented
by idle conditions nor the maximum draw from running all components at full capacity at all times.
Therefore a static understanding of peak heat dissipation capability does not paint a reasonable
expectation of how cooling may affect system performance.

In this chapter, we conduct a case study on thermal behaviors in a SPLIC tank with a im-
mersed compute cluster. We utilize several CPU-based and GPU-based High Performance Comput-
ing (HPC) and datacenter applications with different compute and memory intensities and analyze
hardware thermal behavior and their variations with the SPLIC system configurations and opera-
tions. We also compare the performance on highly similar hardware configurations in a traditional

air-cooled datacenter rack. Unlike prior works that rely on simulations, our case study provides em-
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pirical insights on thermal demands induced by applications and their effects within the immersed
environment.

These experiments demonstrate the tradeoffs between thermal capacity and thermal respon-
siveness in SPLIC systems, the efficiencies of thermal dissipation, as well as the challenges introduced

by modern applications on these systems.

3.2 Related Work

Many design decisions impact the performance of SPLIC, including the number of pumps,
the pump arrangements and settings within the tank, and the choice of dielectric fluid, which have
all been studied by many works [3, 17, 18], primarily via simulation or isolated experiments on
individual components. Existing work has addressed several initial concerns about the technology,
including the extent of dangers to hardware components from absorbing dielectric fluids [19] and the
capital burden of procuring, installing and maintaining SPLIC rather than other more traditional
cooling systems [20]. However, the existing literature largely lacks evaluations of SPLIC hardware

in meeting actual application cooling demands, which we aim to address in this work.

3.3 Research Questions

We investigate specific questions with real application performance in an SPLIC environment

to provide a more comprehensive perspective on the larger subject.

3.3.1 RQ1: What are the thermal behaviors of individual hardware com-
ponents in SPLIC?

Heat accumulates in the pod as power is drawn and used by individual computing com-
ponents. The heat accumulated at a particular component generally increases as that component
utilizes more of its peak capability and when high utilization is sustained for extended durations.
Most commodity hardware is technically compatible with SPLIC, but have thermal designs that do
not explicitly consider properties of ambient liquid coolant. For instance, processors and accelera-
tors typically comprises physical parts such as memory caches and processing cores accommodating

both memory access and compute. Such integration improves performance but has a high thermal
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conductivity and heat exchange within components. SPLIC coolant, if not actively circulated all
the time, is unable to reach thermal equilibrium or transfer heat as fast as fan cooling between
components in close physical proximity.

It is important to understand if high core temperatures dissipate more heat to proximal
components such as memory, particularly for GPUs. Furthermore, the environment’s tendency for
equilibrium may result in certain hardware components operating at higher temperatures than would
be typical given their power design, necessitating cooling interventions for components that may not
have DVFS or thermal throttling capabilities.

We observe the actual thermal operating range and rate of temperature change for key
hardware components before, during, and after prolonged execution of various applications. These
characteristics can be compared relative to the range of temperatures and rate of temperature change
in the tank’s coolant to determine an appropriate response and tolerance within the environment.
We also observe the rate of change in hardware hotspot temperatures and coolant temperature to
determine if the indirect thermal measurement performed by the cooling system can appropriately
respond to high demand from the computing components. We present per-component analyses and

coolant-relative per-component analyses in Section 3.5.1.

3.3.2 RQ2: How do initial conditions affect SPLIC performance and ef-
ficiency?

Some liquid cooling techniques, such as DLC, yield higher heat dissipation rate as the coolant
temperature rises, which is a very convenient upside. We aim to determine whether similar benefits
can be observed in SPLIC by correlating heat dissipation with the initial temperature during cooling
periods, ensuring that workloads do not interfere with the measurements. We also correlate various
component activity measures with temperature dissipation during cooling cycles when applications
are running to determine if different workloads exhibit distinct thermal patterns beyond the rate of

heat introduction into the environment. We analyze these trends in Section 3.5.2.

3.3.3 RAQ3: How do different workloads affect heat accumulation?

Exhaustive studies of application behavior are impractical. In this work, we use a selection

of workloads to represent HPC and datacenter applications with similar primary resource demands
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and study the resulting thermal challenges for the cooling system.

In particular, we consider applications where the primary device used for computation is
CPU or GPU and if the computation is subject to a bottleneck in compute or memory throughput.
Due to the small number of servers, we exclude network throughput as a bottleneck in our study,
though we recognize its importance for large-scale distributed system and workloads. We present a

correlative analysis between workload classification and induced cooling demand in Section 3.5.3.

3.3.4 RQ4: What differences are observed compared to air-cooled envi-

ronments?

Finally, it is important to understand the experienced differences between air- and liquid-
cooled environments. We focus on the differences in response times and the rate of heat accumulation

in Section 3.5.4.

3.4 Experiment Design

We answer the research questions by conducting a set of experiments and analyses as a rep-
resentative case study. Our experimental platform consists of an SPLIC environment with immersed
servers, a suite of applications with various thermal footprints, and tools to monitor sensors and

performance.

3.4.1 SPLIC and Computing Hardware
SPLIC Environment

Our SPLIC environment is visualized in Figure 3.1. We use a Submer SmartPod v3, which
utilizes a proprietary synthetic dielectric fluid to cool all computing hardware within the tank’s
volume. The tank (also referred to as a cooling pod or “pod”) uses two redundant pumps to circulate
coolant. The pod exchanges heat with facility-chilled water, which flows through tubes at the
bottom. The temperature of the in-flow chilled water is measured to be inclusively between 10 to
12 degrees Celsius at all times.

We are limited to only a few servers available for immersion, which cannot generate enough

heat in a short period for our studies if the pod is always connected to the chilled water. To address
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this limitation, we conduct thermal analyses while the chilled water is disconnected and continue
after reconnecting chilled water to observe the system’s capability to respond to strong cooling
demand. This approach allows us to study the SPLIC system’s response to high-heat environments
without excessively stressing the system for prolonged periods. It also allows us to better understand
the capacity of the coolant medium itself in our experiments, which could be overly-protected by the
manufacturer’s minimum settings that require circulation every half hour for at least five minutes.
Each of our experiments maintain high levels of compute activity on a single application without
access to chilled water for an extended duration before halting the application and re-engaging the

chilled water, permitting the system to return to its normal state.
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Figure 3.1: SPLIC tank arrangement used in our experiments.

Computing Hardware

We immerse three server nodes into the SPLIC pod. The nodes are composed of commodity
hardware and colloquially referred to as “deepgreen,” “n01,” and “n02”, as detailed in Table 3.1. The
deepgreen node is the head node directing all application flows while n01 and n02 are compute nodes
that provide additional compute capability to scale application performance.

In this work, we are limited to commodity servers, which generalize across various possible
server configurations. We also leverage this to be as reasonably comparable to current air-cooled

hardware configurations later in our work; our air-cooled hardware is detailed in Table 3.2.

15



Table 3.1: Immersed server hardware used in evaluations.

Nodes Kind Hardware Specs
Mother- | S8021GM2NR-2T | Five (5) PCle 3.0
board x16 slots
CPU AMD EPYC 7551P 2.00 GHz
Deepgreen
32 cores
GPU Two (2) NVIDIA 5120 cores
Titan V 12 GB HBM2
Mother- X9DRG-QF Four (4) PCle 3.0
001, 1002 board x16 slots
’ CPU Intel(R) Xeon(R) 2.30 GHz
CPU E5-2670 v3 64 cores

Table 3.2: Air-cooled server hardware used in evaluations.

Nodes Kind Hardware Specs
Mother- | DELL 0D9WDC | Four (4) PCle 3.0
board x16 slots
CPU Intel(R) Xeon(R) 2.40 GHz
Palmetto 512 E5-2680 v4 28 cores
GPU Two (2) NVIDIA 3584 cores
P100 12 GB HBM2
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Hardware Preparation for Immersion

The SPLIC coolant fluid includes plasticizer, so we replace thermal paste between hardware
components and heat sinks with indium foil. The plasticizer also makes ethernet and power cables
rigid and somewhat brittle after a few months. However, these cables remain at negligible risk of
breaking while undisturbed.

We remove or disable all moving hardware on power supplies, motherboards, GPUs and
CPUs. Server components designed to physically move in an air-cooling environment are unsuitable
for immersion cooling. Take fans, for example; they would generate enormous heat from friction with
the dense synthetic fluid, triggering alarms and risking burning !. Specialized hardware “immersion

ready” or designed to improve SPLIC performance circumvents these issues.

3.4.2 Applications

We utilize a selection of HPC applications with different compute intensities, as shown in

Table 3.3.

Table 3.3: Selected applications and classifications.

Application GPU Throughput

Name Accelerated | Bottleneck
CUDA Stream v Memory
EMOGI v Memory
CUDA DGEMM v Compute
MD5 Bruteforcer v Compute
NPB DT Class=C X Memory
NPB IS Class=D X Memory
NPB EP Class=E X Compute
HPCC HPL X Compute

GPU Applications

We select CUDA Stream as a GPU-enabled memory bandwidth test with minimal compu-
tation. For a more realistic representation of memory-intensive GPU-accelerated HPC applications,

we utilize a manually constructed graph using the EMOGI graph tool [21]. This graph is designed to

1 We indeed experienced this once.
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induce a memory-antagonistic BFS traversal when executed via EMOGI, permitting minimal data
reuse while extending data lifetimes as long as possible per the algorithm’s implementation.

We also include compute-intensive GPU applications, including CUDA DGEMM, a common
compute-intensive kernel utilized within many scientific and machine learning workloads. While
machine-learning implementations may prefer lower precision datatypes than doubles (the “D” in
DGEMM), we note that many scientific applications have not embraced lower precisions and that
most of the computational instructions for lower precisions practically resolve into multiple words
being loaded into the same double-precision pipeline for execution. We also provide the MD5 Brute-
forcing algorithm as an example of datacenter workloads. This application’s repeated hash compu-
tations permit long arithmetic instruction sequences without dependence upon large-scale memory

accesses or highly variable control flows.

CPU Applications

We utilize several key kernels from the NAS Parallel Benchmark Suite [22], including Data
Traffic, Integer Sort and Embarrassingly Parallel. Each of these benchmarks are executed at the
largest class size that can be executed while utilizing the entire server system. As these classes
are designed based on the number of available MPI ranks, we note that the air-cooled replication
occasionally utilizes smaller classes than those executed via the immersed server.

For memory-bottlenecked CPU applications, we focus on Data Traffic and Integer Sort. The
Data Traffic benchmark measures the communication performance between cores and over intercon-
nects in the parallel environment, demonstrating the memory latency and bandwidth constraints on
the system. The Integer Sort benchmark produces a large, in-memory list of integers that are sorted
in parallel with coordination between processors.

For compute-bottlenecked CPU applications, we utilize the NPB Embarrassingly Parallel
benchmark and HPCC HPL benchmark. The Embarrassingly Parallel benchmark application rep-
resents highly parallel compute saturation with minimal coordination between parallel components
and interconnections. Similarly, the High Performance Computing Challenge (HPCC) High Per-
formance Linpack (HPL) represents a solver for a random dense linear system in double precision

arithmetic [23].
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3.4.3 Metrics and Monitoring Tools

We utilize multiple publicly available software tools to collect metrics on CPU, GPU and
NVMe device thermal sensors and activity measures, as well as a vendor-provided API to monitor
the SPLIC system. We monitor the power of the SPLIC system over SNMP interfaces to the PDUs
that all components draw power from, and similarly monitor power usage of the air-cooled server via
vendor-provided reporting tools. To minimize the impact of monitoring on application performance,
our tool is designed to sample each metric at a target rate of 1Hz and caches some information to
reduce the overhead of sample collection. Our software harness is publicly available via GitHub at

https://github.com/tlranda/LibSensorsTools.

CPU Monitoring

We record per-core frequencies from the cpufreq/scaling_cur_freq files in the Linux
/sys/devices/system/cpu/cpu*/ directories. These frequencies are recorded by the CPU governor
in these files as integer-valued KHz.

We also use the libsensors library provided by lm-sensors (version 3.6.0) to monitor CPU
core temperatures. The temperature values are reported in tenths of degrees Celsius.

In the air-cooled server, we also record CPU power draw via RAPL utilities to better

represent the uncore power devoted to cooling the system, which are reported in micro-watt precision.

GPU Monitoring

Within the SPLIC environment, we record GPU metrics listed in Table 3.4 using the NVML
library based on NVIDIA driver version 535.54.03 and NVML version 12020, corresponding to CUDA
version 12.2. Each metric is represented using integer values, so temperature data are reported as
whole degrees Celsius. We record the same metrics in the air-cooled environment, but note that the
P100 GPU architecture does not report memory temperatures, so we do not analyze this component
between the air- and SPLIC- cooled environments. The air-cooled environment also runs slightly
different software versions, notably NVIDIA driver version 550.54.15 with NVML version 12040
corresponding to CUDA version 12.0. These software versioning differences do not affect our metric

recording outside of the previously noted exception for memory temperature reporting.
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Table 3.4: NVIDIA GPU metrics recorded using NVML.

Metric Meaning (Units)
GPU Temperature Average SM temperature (°C)
Memory Temperature Memory junction temperature (°C)
Power Usage Power draw (mW)
Power Limit Maximum power draw (mW)
GPU Utilization NVIDIA metric of SM activity (%)
Memory Utilization NVIDIA metric of memory activity (%)
Memory Used Allocated global memory (bytes)
Performance State NVIDIA metric of device state (integer 0-8)

NVMe Monitoring

We record NVMe temperatures using libnvme version 1.6, which are also reported as integer

degrees Celsius.

Power Monitoring

We record single-precision PDU phase amperage to determine the complete system’s power
draw over an SNMP interface. The Rack PDUs for the immersed system are Schneider Electric
model AP7811B, with a 30 Amp limit and 208 Volt output of single-phase AC current, so the
conversion to Watts is straightforward.

We also collect power consumption within the rack-level of the air-cooled server by the Dell

OMReport [24] tool, which also provides coarse power measurements of the instantaneous wattage.

SPLIC Tank Monitoring

We use a vendor-provided API endpoint to collect metrics listed in Table 3.5 using LibCurl
version 7.68.0. The API reports temperatures as tenths of a degree Celsius and most other values

as integers.

3.4.4 Experimental Procedure

We conduct independent tests utilizing a single application as the workload for the server
for the entire observed duration. Each test begins with thirty minutes of idling activity while
disconnected from chilled water to establish a baseline for experimental conditions. After this initial

period, we repeatedly execute the workload application for 7.5 hours, after which we reconnect the
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Table 3.5: Submer SmartPod metrics recorded from vendor-provided API.

Metric Meaning (Units)
Temperature Average coolant temperature (°C)
Consumption Pod power consumption (W)

Dissipation Thermal dissipation (both as °C and KW)
mPUE Power Usage Effectiveness (scalar)
Pump RPM Pump rotations per minute (scalar)
Coolant Temperatures Input/output coolant temperature (°C)
Water Temperatures | Input/output chilled water temperature (°C)
Flow Rates Flow rate of coolant and water (L/minute)

chilled water supply to the pod. We continue to monitor temperatures for an additional 24 hours as
the pod dissipates accumulated heat and returns to its equilibrium state.

Due to potential harms to the air-cooled hardware, we do not disable any cooling components
for our replicated experiments on these servers. We perform the same pre- and post- application
idling periods to maintain as similar of conditions as possible between environments, but the cooling
components are unaltered throughout our entire duration of monitoring. We also shorten the post-
application idling period relative to the immersed server simply due to less time being required for

air-cooling to return the system to baseline conditions, which are shown in our results.

3.5 Experimental Results

We report our results based upon the research questions posed in Section 3.3. The first
three research questions are exclusive to the immersed environment, with the fourth question also

including data from the air-cooled environment.

3.5.1 Thermal Behaviors of Individual Hardware Components (RQ1)

Importance. The range of measured temperatures of each hardware component determines
the risk of violating thermal tolerances and how quickly temperatures may be expected to change.
We also seek to identify variations in temperature based upon the application demand to determine
if thermal behavior is purely driven by energy expenditure or if more complicated behaviors emerge.

Metrics. We begin by analyzing the minimum temperature as a small range of values

collected during the idle baseline prior to each application test. As initial conditions are similar
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across all experiments, we aggregate all data during these periods to establish the minimum, mean
and maximum observed temperatures of each component.

We then consider the recorded temperatures across each experiment’s active application
periods to determine the greatest attained temperature over the baseline and the greatest linear rate
of temperature increase throughout all experiments. We compare the dissipated coolant heat relative
to hardware activity measures to determine if more complex modeling is needed than pure power
demand. The hardware activity measures and collection techniques are defined in Section 3.4.3.

Results. Each of the above metrics are computed for all monitored hardware and presented
in Table 3.6. All hardware components except the NVMe are capable of changing temperatures
faster than the pod coolant, however only the GPU hardware was observed to reach levels where
thermal throttling could become a reasonable concern when executing the DGEMM application,
where it reached a maximum temperature of 96 °C. The Titan V GPU models are designed for a
maximum operating temperature of 91 °C, with thresholds for slowdown and shutdown at 97 and 100
°C, respectively. Had the experiment continued beyond the eight allotted hours, the disconnected
chilled water would not permit adequate heat exchange for the SPLIC system to protect immersed
hardware and could have permanently damaged the GPUs. This represents a somewhat reasonable
upper bound for our experimental conditions, however we note that our pod has additional coolant
volume as not all compute racks are filled. A pod with all racks completely filled will both have
more power draw within the volume and a lower ratio of coolant to heat-producing mass. This may
require a faster response if chilled water becomes inaccessible to preserve the integrity of the system.

Notably, GPU temperatures fell to 46 °C almost immediately upon terminating the DGEMM
application for this experiment, and a repeated execution of the benchmark without interrupted
access to chilled water failed to exceed a GPU temperature of 80 °C. With the re-introduction of
chilled water for heat exchange, the SPLIC system was able to return all temperatures to normal
idling levels over the next 9 hours. When comparing the drop in temperatures at the moment the
applications end, we note that the increase in coolant temperature is nearly one-to-one with the
excess heat retained by hardware components, delaying a return to normal idling conditions until
the entire fluid volume is cooled. Our results cannot generalize across all vendor products and
configurations, but we believe this forms one of the most reliable stress-tests to calibrate emergency
response thresholds. Figures 3.2 and 3.3 show detailed temperatures of this experiment in without

chilled water and with uninterrupted access to chilled water.
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Table 3.6: Thermal behaviors within SPLIC system by hardware component.

Temperature (degrees Celsius)

Hardware | Idle Temperature | Interval (s) Maximum Observed
Component | Minimum/Mean to Increase Operating Temperature
/Maximum (°C) | Temp by 1°C (°C)
SPLIC 19.80 / 21.41 970.99 47.10
Coolant / 22.50
deepgreen 14.75 / 17.51 702.20 55.62
CPU / 19.66
deepgreen 24.25 / 26.54 266.83 96.00
GPU / 28.00
deepgreen 14.00 / 17.91 1068.48 44.00
NVMe / 20.00
n01 17.44 / 21.30 607.33 66.00
CPU / 24.04
n02 17.67 / 20.81 560.35 69.00
CPU / 24.26
—— deepgreen GPU 0 Core Temp
901 —— deepgreen GPU 0 Memory Temp
801 —— deepgreen GPU 1 Core Temp
—— deepgreen GPU 1 Memory Temp
701 —— deepgreen Coolant Temp
| Application Start (t=1800s)
601 I Application End (t=28532s)
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Figure 3.2: Thermal Behavior of DGEMM Without Chilled Water. DGEMM runs on GPU 1.
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Figure 3.3: Thermal Behavior of DGEMM With Chilled Water. DGEMM runs on GPU 1.

3.5.2 Effects of Initial Conditions (RQ2)

Importance. SPLIC’s energy efficiency may correlate with fluid temperature, making a
trade-off between maximum thermal tolerance and long-term energy expenditure.

Metrics. We monitor the dissipated heat during periods where pumps are active and chilled
water is available for the SPLIC heat exchange.

Results. We present the aggregated data across all observations in Figure 3.4. It’s clear
that the maximum heat removed positively correlates with a higher initial temperature, however the
minimum heat removed during a cycle remains roughly constant regardless of initial temperature.
Because the pump activity duration, chilled water temperature and pump power draw are held
invariant in our experiments, this implies that SPLIC can yield increased energy efficiency at higher

temperatures, however the behavior is not guaranteed to be observed.

3.5.3 Effects of Workloads on Heat Accumulation (RQ3)

Importance. Given that almost all hardware components can heat up faster than the
average coolant temperature, it’s important to know what workloads will likely produce the greatest
heat accumulation within the pod. This simplifies benchmarking a system’s cooling demands and

ensures system responses can be properly calibrated for extended application executions.
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Figure 3.4: Temperature at start of idle pump cycle vs amount of heat removed.

Metrics. We use the average interval to increase the temperature by one degree Celsius
when the temperature delta reaches the maximum during application execution. To simplify com-
parisons, we group applications based upon CPU- or GPU-centric classifications and application
throughput being Compute- or Memory-bound as previously denoted in Table 3.3.

Results. We display the interval of each experiment application in Figure 3.5. The lower
values indicate faster heat accumulation. These applications present a good range of heat accumu-
lation rates. In contrast to common impression that GPU applications accumulate heat faster, only
compute-intensive GPU applications do, while memory-bound GPU applications yield relatively slow
temperature changes. In general, compute-bound applications accumulate heat faster than memory

bound applications, no matter whether they are programmed to run on CPU or GPU.

3.5.4 Comparison to Air-Cooled Environment (RQ4)

Importance. To fully understand the current state of this SPLIC technology, a comparison
to current air-cooling is warranted. Air-cooling includes fans within hardware components, the
chassis, and the rear door heat exchange on the server closet. In particular, we want to detail the
differences between the responsiveness of the cooling systems and the rate of heat accumulation
within the system to determine differences in thermal management strategies. Additionally, we

attempt to monitor power usage conditions to estimate the energy usage of the cooling systems
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Figure 3.5: Time intervals required by applications to accumulate heat. The smaller the interval, the faster
the application execution increases coolant temperature by 1° Celsius.

themselves.

Metrics. We measure heat accumulation and responsiveness in the air-cooled environment
following the same methodology from Section 3.5.1. Unlike the immersion-cooled experiments, we
cannot disable the air cooled fans due to safety protocols, however all other conditions remain the
same.

For power measurements in the air-cooled server, we rely upon Dell’s OMReport utility for
node-level power, which differs from the SNMP PDU power readings we utilize for the immersed
servers as the latter reports overall power including possibly idle components (i.e., unused servers in
GPU experiments). To account for this and slight hardware variations between the two setups, we
report power differentials over the pre-experiment idle baseline to ensure fairer comparisons between
the systems. To ensure the energy measurements are more comparable between the two environ-
ments, we repeat all SPLIC experiments without interrupting access to cooling, ensuring that the
system operates under its expected conditions. we also subtract the power draws of components
that report their own power usage, primarily the GPUs themselves, to further isolate the overall
power draw due to cooling demand. Notably, we find no statistically significant change in applica-
tion runtimes throughout our experiments in either environment, so less total power draw directly
correlates with less cooling energy demand from the system to perform a given task.

Results. Unlike our experiments with the immersion cooling tank, we cannot measure the

26



coolant fluid (air) for the dry server environment in isolation. This makes Figure 3.3 the nearest
comparison to Figure 3.6 where we present the same DGEMM experimental benchmark studied on
the air-cooled system. Despite highly similar idling temperatures, the air-cooled server sees slightly
increased GPU core temperatures relative to the immersion-cooled server while under load. Even
with access to chilled water, a gradual increase in the component temperatures was observed in
the SPLIC environment. In the air-cooled environment, this is not the case, with temperatures
holding steady over the entire experiment duration due to constant cooling conditions. However,
the component temperatures reveal the limited thermal capacity of air. For instance, the CPUs
in the air cooled environment accumulate heat 1.3X faster than the immersed CPUs despite the
active cooling conditions. The air-cooled GPUs have fans deliberately positioned to prevent them
from overheating, and therefore their internal temperatures rise slower than the immersed GPUs by
a factor of 1.2X. The SPLIC coolant fluid removes heat more efficiently from components while it
has a temperature differential between components, and excess coolant volume grants higher heat

capacity in the immersed environment.
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Figure 3.6: The air-cooled server has similar idle and active temperatures as the immersion-cooled server,
however there is no gradual heat accumulation and temperatures return to nominal idle levels much faster.
The lighter area for CPU temperature denotes the highest and lowest observed core temperatures while the
line represents the average across all CPU cores.

We also observe that the air-cooled components return to nominal idle temperatures faster

once the application period terminates, needing only 4 minutes compared to over 3 hours for the

27



immersed hardware. Despite the lower capacity and thermal differential between coolant mediums
(the circulated air is roughly 11 C warmer than the chilled water), there is a faster rate of coolant flow
and normalization in air-cooling. Our results without access to chilled water during the application
period represent an exaggerated version of this effect, where the GPUs require 6.25 hours to return to
nominal idle temperatures and the overall coolant volume requires an additional 9 hours (a total of 15
hours after ceasing compute activity) to fully dissipate the heat. The SPLIC system is only designed
to proactively remove heat beyond a set point, but these results demonstrate how thermal activity
within the system can have a long-lasting lifetime due to the relaxed cooling responses and the
recycled coolant and small proportion of coolant volume that passes through the heat exchange. By
contrast, the air-cooled server returns to nominal temperatures faster due to its constant replacement

of air as coolant fluid.

Hardware | Idle Temperature | Interval (s) Maximum Observed
Component | Minimum/Mean to Increase Operating Temperature
/Maximum (°C) | Temp by 1°C (°C)
node0091 27.06 / 27.32 475.86 54.00
CPU / 28.10
node0091 26.00 / 26.49 309.89 66.00
GPU / 27.00
node0048 25.32 / 25.66 1325.07 45.13
CPU / 26.26
node0048 25.00 / 25.50 315.08 27.00
GPU (idle) / 26.00

Table 3.7: Thermal behaviors within air-cooled system by hardware component. The node0048 GPUs are
not used to mirror the conditions of the SPLIC environment.

Compared to Table 3.6, the air-cooled results in Table 3.7 have higher CPU idle tempera-
tures but similar idle GPU idle temperatures. The maximum observed temperatures of individual
components are lower than those measured in the immersed environment. This is largely due to the
heated air being pushed out of the system rather than lingering around the hardware as it increases
in temperature, which limits opportunities for accumulation and heat-sharing between components.

Finally, we estimate the energy devoted to cooling between the two environments under
normal operational conditions. For the SPLIC environment, the power draw for the tank itself is
directly provided, allowing us to directly measure energy utilized for circulating coolant via the
pumps. In the air-cooled environment, we attempt to isolate the uncore power of the system minus

a reasonable baseline, then estimate the fan power as a percentage of the remaining uncore power.
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Hardware Type Application SPLIC Pump Energy | Air-Cooled Fan Energy
Estimate (Kilo-Joules) | Estimate (Kilo-Joules)
Memory CUDA Stream 21.1929 5.8531
GPU EMOGI 20.5241 * -
Compute CUDA DGEMM 18.4060 22.5619
MD5 Bruteforcer 29.9982 19.4239
Mermory NPB DT 29.8733 * 13.6337
CPU NPB IS 27.9306 * -
Compute NPB EP 28.6444 * 35.1672
HPCC HPL 19.2698 0.0537

Table 3.8: Estimated energy utilization for all cooling required for each benchmark’s workload until tem-
perature normalization. Fan energy estimation is based on 2% of the above-idle unaccounted uncore power
of the air-cooled system. (*) denotes values that lacked chilled water during application period; these will
be updated for the final draft.

Table 3.8 shows the energy estimations for cooling across our experiments. We repeat
the experiments with uninterrupted access to chilled water for the SPLIC environment, as the
periodic pump cycles dissipate heat ineffectively while the application is on, but still consume energy.
Notably, when comparing DGEMM results with and without access to chilled water as the application
runs, the total cooling demand is increased from 20 kJ to 31 kJ. The amount of heat introduced
in these scenarios are identical, so a decrease in the energy required to normalize temperatures
is representative of more efficient cooling conditions. For lower-heat applications such as CUDA
Stream, the SPLIC pumps expend half of their cooling energy while the application is active, which
is still double the estimated energy used by fans, resulting in large excesses of power demand from
the cooling system. For higher-heat applications such as DGEMM, our estimates indicate less
energy used by the SPLIC system, suggesting greater dissipation efficiency than air-cooling despite
a similarly prolonged duration for temperatures to normalize. This suggests a nuanced need for
scheduling and controlling pump activity not only to prevent hotspots from adversely affecting
hardware, but also to optimize the energy efficiency of the system with respect to the thermal loads
within the system.

Under perfectly replicable conditions the energy to be removed from the system would be
identical between SPLIC and air-cooled environments, which should largely require the same energy
expenditure to remove heat from the system. However, the energy required to dissipate heat is not
guaranteed to be the same. For instance, in Shah et al [19], a white mineral oil is measured to have
6.5x more thermal conductivity and 1.6x more thermal capacity compared to air, but at the cost

of 100x more viscosity and 693x the fluid density, meaning that the energy efficiency per unit of
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heat dissipation is not strictly one-to-one between these mediums. The primary importance of our
results is to further validate that similar energy is used by both systems for actual heat dissipation,
and the practical difference between the systems lies in the duration over which cooling activity
occurs. Estimating fan power using a different percentage of uncore power can increase or decrease
the energy estimation of air-cooling estimates proportionally, however since both environments also
permit untracked ambient heat dissipation we do not belabor the point. A more rigorous experiment
would be required to track affects such as heat naturally radiating from the air-cooling fins and

motherboard surface without fan circulation or heat that dissipates through the SPLIC tank walls.

3.6 Conclusions

Our experiments reveal a few initial insights about the current state of SPLIC immersion
technology.

Strong resilience to thermal changes. Current tank designs use temperature readings
at coolant pumps, instead of relying on embedded sensors in hotspots and computer components,
to respond to thermal changes. This is a fixed strategy. As evidenced by our experiments, the
technology can handle fluctuations in computing demand for extended durations. Despite the ther-
modynamic advantage of liquid fluid over air as a coolant medium, our experiments provide evidence
that current SPLIC technology does not dissipate heat as quickly as traditional air-based cooling
systems. The limited volume of SPLIC fluid that can perform heat dissipation via the exchange
with chilled water also reduces the rate of change in overall component temperatures, which may
require special considerations.

Delayed responses to temperature differentials. Our study shows that hot spots
within hardware components have significant lag time before pod sensors can detect changes in
temperature, meaning that responses must be calibrated to be more aggressive in inducing a cooling
response in case hardware conditions outpace the system’s detection. Especially compared to air-
based cooling responses, SPLIC systems’ focus on energy-efficient cooling via indirect means can
result in certain components overheating before the system is able to initiate a response. Future
iterations of the hardware that can directly read computer components’ sensors would be capable
of producing more appropriate demand cooling responses in these circumstances.

Second, the amount of fluid that circulates through the heat exchange is minimal compared
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to air-based cooling system. While the SPLIC fluid volume is capable of holding more heat than air,
only a small portion of the volume can pass through the heat exchange at any time, which limits the
rate of heat dissipation. This also redistributes heat retained by the coolant volume throughout all
computing components, including ones that typically do not warm up during operation. After long
durations, the reduced thermal differential between hardware and coolant reduces the rate of heat
dissipation and extends the time required for hardware temperatures to return to nominal levels.
This limits the proportion of thermal capacity within the coolant that can be leveraged within safety
tolerances.

Ease of operation and maintenance. Modifying commodity hardware for initial server
setup is intrusive but can be circumvented by utilizing specialty hardware designed for SPLIC. Non-
specialized hardware can be limited by server layout, such as connectors that cannot bend sharply
to reach ports and certain components that are inaccessible for maintenance without completely
removing server blades due to the pod rack’s vertical orientation. After removing hardware from
the pod for maintenance, liquid residue can create slipping hazards and must be carefully monitored
and cleaned. Finally, adding or removing components in the pod changes the level of coolant, which
may require adding or removing coolant to maintain an appropriate volume for the container.

Reliability. Throughout our extended immersion of hardware, we have not observed degra-
dation in peak performance. Plastic components affected by the plasticizer are eventually damaged
and may require replacement during or after maintenance.

We make note that a power event at our datacenter inadvertently placed the pod’s man-
agement software into a “demonstration” state. This state altered behaviors of the pod’s operation
and visible feedback mechanisms, including displaying inaccurate information on fluid temperatures
and pump activity. The behavioral changes included increased facility water draw (we measured a
constant 9%3 compared to our normal peak draw of 6%) while disabling coolant circulation. These
changes did not immediately damage any equipment, but could have prevented active cooling and
created a legitimate risk of damaging the immersed hardware if these changes were not observed by
our facility’s staff. The “demonstration” settings persisted through power cycling the entire unit,
requiring us to shut off the equipment until the issue was properly identified and rectified with ven-
dor assistance. We have advised the vendor against shipping this capability in future versions of the
management firmware as it is intended for use in showrooms and not in production systems. Due to

the closed-source nature of these systems, unexpected behaviors such as these may arise periodically
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as the technology matures and adapts to different environments and use cases.
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Chapter 4

Lasting GPU Acceleration: A Case

Study in Word2Vec Optimization

4.1 Introduction

Improvements to computing hardware can provide some performance improvements to soft-
ware applications transparently. However, most applications are only designed to leverage the current
scale of hardware capabilities at the time of development. This can limit performance improvements
of software relative to the increased peak capability provided by newer hardware. This frequently
occurs in GPU software, where new hardware often provides additional capacity and throughput for
both memory and compute but software fails to realize proportional performance improvements.

We observed such performance scaling limitations in GPU implementations of Word2Vec
[10], a distributed artificial neural network. Word2Vec trains dense vector representations of words,
known as word embeddings, from natural human language. The trained embeddings enable programs
to meaningfully interact with human language through vector geometry that efficiently captures
syntactic and semantic similarities between words for further learning and inference [25]. Vector
operations permit combinations of words to expose more complex and conceptual relationships. For

example, the words ‘Rome’ and ‘London’ cluster relatively near to one another in the embedding

Portions of this chapter are based on work that was originally published in the Proceedings of the International
Conference on Supercomputing 2021 under the title “FULL-W2V: Fully Exploiting Data Reuse for W2V on GPU-
Accelerated Systems”.
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space, and the distance between them is similar in direction and magnitude to the distance between

the words ‘Italy’ and ‘UK’.
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Figure 4.1: Roofline benchmarks for state-of-the-art Word2Vec kernels on a V100 GPU. The solid blue
line is the roofline boundary, the dotted blue line marks the inflection point between memory-bound (left)
and compute-bound (right). Previous work is memory-bound and exhibits poor overall throughput despite
being data-intensive; our work, FULL-W2V| presents a significant improvement.

The state-of-the-art [26, 27, 28, 29] GPU implementations of Word2Vec — Wombat [28]
and accSGNS [29] — struggle to effectively utilize the architecture as shown in Figure 4.1. While it
is well known that data-intensive workloads struggle to achieve high arithmetic throughput, GPU
implementations of Word2Vec have thus far not approached the peak of its potential performance on
this architecture. Our implementation — known as FULL-W2V — represents a significant improve-
ment in overall performance and a significant climb in effective arithmetic throughput. These results
confirm the challenges in managing latency for Word2Vec on GPUs for data-intensive workloads like
Word2Vec as well as the necessity of highly-targeted optimizations.

It is worth noting that many tasks within the natural language procesing (NLP) landscape
that used to rely on word embeddings have replaced the use of word embeddings with transformer
networks [30] and large language models, including language translation, image captioning, and au-
tomatic summarization. However, many “2Vec” variations based on Word2Vec remain relevant to
this day, especially within field-specific text analyses, recommendation systems and graph process-
ing [8, 31, 32, 33, 34, 35, 36]. Applications that continue to utilize word embeddings continually
need to be updated to capture the latest domain knowledge that can be extracted from ever-growing

and ever-evolving corpora and graphs. However useful these word embeddings may be, it is com-
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puatationally expensive to train new Word2Vec embeddings for three primary reasons. First, the
Word2Vec algorithm [10] sequentially trains small moving context windows from the corpus with
minimal data parallelism, repeating the process until convergence. Second, the algorithm’s compu-
tational complexity scales with both the embedding size and number of unique words to be embed-
ded, the vocabulary, which are ever-increasing for many applications. Third, the state-of-the-art
algorithms involve intensive memory accesses and have low arithmetic intensity, limiting hardware
scalability. Using Word2Vec and similar techniques with larger and larger datasets requires through-
put scaling for training in order to remain effective. While multiple techniques have been proposed
to explore parallelism on GPUs [26, 27, 29, 28] and to reduce memory accesses by improving data
reuse [27, 37, 38|, these works fell behind the performance capabilities of recent generations of GPU
hardware and are unlikely to scale to future hardware architectures due to the aforementioned issues.

We devise novel technologies to significantly improve Word2Vec performance on GPU ar-
chitectures. Our key idea is to fully exploit reuse opportunities for different types of words during
training, and explicitly cache them in registers or shared memory based on their request size and
duration. While we explicitly study the Word2Vec algorithm in its original text-based form, we
note that all algorithmic concepts are transferrable to other domains (i.e.: graph nodes operate as
“words” and edges act as “sentences” in Node2Vec [33], the graph-based variant of Word2Vec) and
therefore our work generalizes to other applications within this class of algorithms. Word2Vec has a
high degree of reuse opportunities that are particularly suited to the storage technologies on GPU
if the algorithm is expressed correctly to take advantage of them. For example, high numbers of
available and flexible registers, and explicitly allocable shared memory with the same latency as
low-level caches. We take advantage of these technologies to cache reused data fully for the extent of
its lifetime, use techniques such as ring buffers to limit the overhead and management cost of such
techniques, and balance heavy storage use to ensure scheduling units are still saturated and latency
is fully hidden.

In this chapter, we present FULL-W2V | a fine-grain parallelism, highly scalable Word2Vec
GPU algorithm with optimized data reuse. First and foremost, this algorithm maintains the required
semantic ordering of context windows, maintaining prior guarantees of convergence. Second, it
exploits three levels of work partition including batches, sentences, and embedding to create high
degrees of parallelism on GPUs. Third, compared to previous work, our algorithm fully exploits

data reuse opportunities, resulting in increased throughput and greater performance scalability,
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nearly eliminating per-thread memory stalls. Lastly, our algorithm coordinates CPUs and GPUs to
seamlessly provision data and launch concurrent kernels to saturate GPUs with work.

We have implemented the algorithm and evaluated the prototype on multiple generations of
GPUs. Experimental results show that our algorithm produces embeddings with the similar quality
as existing works. It automatically achieves 2.966X speedup when moving from Nvidia Pascal 100
and Volta 100 cards. In comparison to the state-of-the-art CPU and GPU algorithms, it outperforms
state-of-the-art multithreaded CPU implementations by 5.44X, and modern GPU implementations
accSGNS and Wombat by 5.724X and 8.647X respectively. Deep analysis shows that our algorithm
increases the arithmetic intensity by 23.90 and 16.46 over accSGNS and Wombat respectively by
improving register locality and utilizing advanced caching techniques to control data reuse.

We make the following contributions in this chapter:

e We present FULL-W2V, a fine-grain parallelized, highly scalable Word2Vec GPU algorithm,
which overcomes the challenges of latency hiding inherent in data intensive Word2Vec training.

It achieves 8.647X speedup over the state-of-the-art on Nvidia V100 GPUs.

e FULL-W2V is the first Word2Vec implementation to exploit independence of negative samples
to enable opportunities to cache and reuse negative samples in registers for Word2Vec train-
ing. It improves arithmetic intensity and instruction level parallelism by interleaving memory

demand and computation.

e Realizing that memory access is still a performance bottleneck, FULL-W2V exploits lifetime
reuse of context words to eliminate 91% of overall memory demand, significantly reducing

average memory access latency while optimizing data sharing, reuse, locality, and coalescing.

4.2 Related Work

All Word2Vec implementations historically stem from foundational work by Mikolov et
al [10, 9], which expresses high level data parallelism between sentences of the corpus for improved
performance. According to Hogwild! SGD [39], as long as large models are trained with batches that
have sufficiently varied contents, parallel gradient descent training can be performed in a lock-free
environment without synchronization. This condition is generally true for Word2Vec with distinct

sentences from a given corpus, so data parallelism amongst sentences is commonly exploited using
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CPU threads or GPU thread blocks.

There have been many implementations of Word2Vec since the seminal works, including
implementations for the Tensorflow [40] and Gensim [41] machine learning frameworks. The algo-
rithm has been ported to many architectures, including the cloud-based BlazingText [26], cluster
implementation BIDMach [42], and FPGA architectures [43]. We focus the rest of our discussion on
published Word2Vec implementations that push the boundaries of the algorithm’s throughput on
single-node CPU and GPU architectures.

4.2.1 State-of-the-Art CPU-based Implementations

pWord2Vec. Ji et al [38] reduce memory intensity of Word2Vec by “sharing” the first
N negative samples with all other context words in each window. For data-intense networks such
as Word2Vec, reusing many vectors in each context window’s update greatly improves arithmetic
intensity, which is further exaggerated by allowing high-performance BLAS libraries to perform
the matrix arithmetic. While the authors were able to show that the semantic changes to the
Word2Vec algorithm did not affect embedding quality, the matrix sizes are relatively small and the
implementation’s performance still fails to approach peak CPU throughput.

pPSGNScc Rengasamy et al [37] utilize advanced batching techniques to combine multiple
context windows into larger matrix batches. The technique allows CPU architectures to achieve
much greater throughputs, but computation still takes place entirely on the CPU architecture and

is otherwise equivalent in performance to pWord2Vec.

4.2.2 State-of-the-Art GPU-based Implementations

accSGNS Bae and Yi [29] utilize a fine-grain parallel implementation of Mikolov et al’s
original Word2Vec to bring the algorithm to GPU architectures. Their parallel hierarchy maps GPU
threads directly to embedding layers while thread blocks and grids exploit data parallelism between
sentences. The vector parallelism utilized in their implementation allows for some scalability on
newer architectures, but is largely memory-latency-bound as little is done to affect the data-intensive

nature of the Word2Vec algorithm, leading to workload imbalance and poor performance scaling on
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newer architectures.

Wombat Simonton [28] focuses on Shared Memory optimizations for Word2Vec, leveraging
the architecture’s caches to exploit reuse within context windows. The implementation’s parallel
formulation uses relatively small thread blocks to operate on fixed word pairings from a context
window while grids scale this parallelism across sentences. The techniques provide state-of-the-art
performance on older architectures, but scheduling limitations imposed by the parallel decomposition
hold back performance on newer architectures, leaving large room for improvement.

PARW2V Moon et al [27] more recently provided CPU and GPU implementations of
Word2Vec that induce locality by reordering operations in Word2Vec’s training updates and allow
for reuse of negative samples beyond a single context window. The exact degree of negative sample
reuse that can be exploited prior to reducing the quality of embeddings was not well understood, and
the implementation mandates strict hyperparameter values that limit generalizability. Furthermore,
we were unable to replicate the paper’s reported results on our own systems, so this work is not
discussed further in this chapter.

Our FULL-W2V is most related to accSGNS as both implementations utilize the same par-
allel hierarchy. However, we improve upon prior techniques by developing a cache for context words
that fully reuses them throughout their lifetime in the sliding window with minimal management.
We also utilize a local register cache and modified the workload decomposition to gain lifetime reuse
of negative samples. All of these methods take advantage of data reuse and problem decomposition

in manners previously unseen in Word2Vec.

4.3 Challenges on GPU

Addressing Memory Intensity and Latency. Like most machine learning algorithms,
Word2Vec trains on a large amount of data, has inherently low computational intensity, and is gener-
ally latency-bound. For CPU implementations, Word2Vec is parallelized coarsely along independent
sentences. The relatively low computational intensity and throughput of existing GPU implementa-
tions have demonstrated that a proper decomposition is difficult. To appropriately take advantage
of the massive number of cooperative threads and memory hierarchies on the GPU, fine-grain par-
allelism within sentences must also be exploited, so as to effectively minimize high-cost memory

accesses, hide latency, and maximize the effectiveness of cooperative threads.
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Managing GPU Resource Tradeoffs. GPUs have fundamental tradeoffs when using
different resources to improve performance. Shared memory and register caches are both high-
speed options for caching data locally for high-locality operations. These two resources are more
reliable than implicit caching, especially when (1) the required data for many threads may exceed
the available footprint in L1 or lower level caches and (2) data with different levels of locality are
required for the same computation. However, these resources also have limited capacity, and their
overallocation can restrict the total number of resident threads available for execution, leading to
reduced ability to hide memory latency. Eliminating expensive memory operations by caching data
and hiding latency by using cache to support thread execution both serve to improve performance,
but it is difficult to predict which is more effective for a given problem. We must tune the usage of
these resources to the application’s data locality and balance their usage to maximize performance.

Preserving Embedding Quality. When exploring new avenues for parallelization and
data caching, it is critical that we avoid data dependency violations and minimize race conditions.
All parallel implementations of Word2Vec thus far have had implicit race conditions between sen-
tences containing the same words, but the impact of this is minimal and does greatly impact the
rate at which the algorithm converges under the principles described by Hogwild [39]. However,
when introducing further parallelization at the sentence level we risk introducing data dependency
violations and compromising the quality of the embeddings produced. Additionally, changes to al-
locable memory and explicit caching potentially introduce additional coherency issues that must
be managed. Careful algorithmic analysis and study of data lifetime is required to preserve overall

embedding quality.

4.4 Methodology

In this section we introduce FULL-W2V, a highly optimized Word2Vec algorithm that is
scalable on GPU accelerators. It overcomes the limited data locality in the state-of-the-art imple-

mentations and effectively exploits GPU architectures in two key ways:

e It exploits independence of key arithmetic sequences and decouples computations in fine gran-

ularity for improved parallelism and reduced data dependency.

e It fully exploits the temporal locality and data reuse to reduce access to lower levels of memory

and average memory access time.
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4.4.1 The Independence of Negative Samples

We first introduce the negative sample independence property of Word2Vec that allows us
to make fine-grain parallelism and highly-effective memory access optimizations. When processing
each context window in a sentence each context word is paired against each negative, and the
sum result all pairings is applied as the model update. Because the sum is commutative, each
pairing may be computed independently in any order. Acknowledging this independence offers
us two opportunities. First, each negative sample can be independently paired with the context
words without synchronization, allowing fine-grain parallel processing among the negative samples.
Second, we can change the order of processing such that all context words are processed for a fixed
negative, enabling temporal locality for each negative sample. Recognizing the property of negative
sample independence, FULL-W2V flexibly manages the order that negatives are processed within a
single context window and cache them to maximally reduce accesses to low memory levels.

Fine-Grain Parallelism and Temporally Distributed Data Dependencies. Each individual
negative is independently iterated over the context words in a context window, and the N + 1 neg-
atives can be fully decoupled from one another. The decoupling enables two types of opportunities:
(1) fine-grain parallelism and (2) reduced simultaneous data dependencies. Fine-grain parallelism is
crucial to latency hiding and scalable performance on GPUs, and provides flexibility for the scheduler
to utilize available hardware resources. The decoupling reduces the simultaneous data dependency
to a single negative sample instead of the whole collection, distributing the total number of accesses
over the lifetime of the computation. Thus it eliminates the need for a thread block to simultaneously
access and store all N + 1 negatives locally for the duration of the entire context window. Instead,
each thread block only accesses the corresponding negative sample and stores its embedding vector
directly for its lifetime.

With only one dependent negative, FULL-W2V stores the vector representation in a per-
thread register cache. Using registers instead of shared memory has two advantages. First, register
access incurs a much lower latency than shared memory access and alleviates the demand for latency
hiding. Second, a negative sample does not have a large number of reuses, which shared memory
requires for best practice. Indiscriminately and aggressively using shared memory reduces the space
for thread warps and leads to degraded parallelism, performance, and limits the quantity that we

can use for other optimizations better-suited for additional data reuse.
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Temporal Locality and Reuse. FULL-W2V stores each negative sample in a register and
accumulates all the required embedding updates in-register before writing it back to memory. Each
negative sample is reused by 2W times spanning a single context window. In this way, we ensure our
negative reuse has minimal impact on the quality of the resultant embeddings. While prior works [27,
37, 38, 42| indicate that the particular negative samples do not need to be independent across context
windows, Moon et al [27] show that excessive reuse for negative samples has harmful impacts on
the final embedding quality. Nevertheless, the limitations are not deeply understood by established
literature. The reuse in a single window has notable improvement for minimal embedding quality
cost [38], and greatly improves the access and storage patterns of negatives for GPU architectures.

One complexity of progressing to the next context window is the consistency requirements
imposed by incremental model updates. As the context window slides across a sentence, context
words are reused several times and therefore the corresponding model parameters have data de-
pendencies on prior updates, requiring strict sequential context window ordering. Violating this
constraint significantly harms algorithmic convergence and the resultant quality of trained embed-
dings. In order to adhere to strict context window ordering but take advantage of negative sample
independence, FULL-W2V uses each thread block to process an entire sentence, with individual
windows processing all negative samples independently before synchronously sliding the window.
This approach optimizes the targeted negative reuse without violating any data dependencies and

without over-reusing possibly stale data.

4.4.2 Lifetime Reuse of Context Words

The second optimization enables maximum data reuse for context words in the algorithmic
characteristics of Word2Vec. As shown in Figure 2.1, we can determine the exact lifetime of context
words based on the algorithmic structure of Word2Vec.

In traditional Word2Vec, each context window has a width that is randomly sampled be-
tween 1 and W and each window shifts the boundary and target word over by one position [44].
We can equivalently say that a context word’s lifetime occupies at least 2 and no more than 2W
windows plus one use as the target word of a context window, but the exact number of contextual
uses varies based on sampling. Despite these known bounds for reuse, existing GPU algorithms
fail to leverage this or compete with other memory demands of the algorithm by relying on the

hardware’s implicit memory management. This means that if a word is not sampled as context but
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still has remaining lifetime, it could be evicted from the lower-level cache as other thread blocks
induce memory demand, only for the word to be re-included in subsequent windows and need to
be reloaded from higher-level caches or global memory. Separated from existing work, FULL-W2V
fully exploits data reuse between context windows for the first time by explicitly caching and reusing
context words with minimal resources.

To reduce expensive high-latency memory accesses, FULL-W2V carefully utilizes GPU
shared memory to cache context words for their entire lifetime and no further duration beyond
that lifetime. A naive approach to enable reuse across multiple context windows is to allocate suf-
ficient shared memory for all context words across the maximum lifespan. Naively re-implementing
the original usage of context windows in a GPU shared memory cache would require 2W x d space
for each context window, with a full d-length vector per word in shared memory, or complex dy-
namic memory management to handle the vectors. In addition to this memory, relevant metadata
to reproduce the context windows at training time would also need to be stored and fetched from
memory. This approach would require a prohibitive amount of shared memory and management
control flow, so a more sophisticated and scalable solution is required.

In order to minimize complexity and maximize scalability, FULL-W2V slightly alters the
implementation of the context width hyperparameter. FULL-W2V uses a fixed context width
W = f%], or the average of the original random distribution. On average, the fixed context
width produces the same quality embeddings while reducing (1) the need to sample or store per-
context window metadata, (2) the shared memory allocation requirement by half, and (3) the overall
implementation complexity of memory management. To simplify memory management and elimi-
nate the need for costly GPU-based control flows, FULL-W2V builds a circular ring buffer in shared
memory that matches the conceptual sliding window in Word2Vec. Each context word vector can
be stored in shared memory upon its first introduction as a context word up until the final context
window of its lifetime is trained. At this point, the new context word introduced by the next window
can overwrite the oldest word whose lifetime just expired. Using this explicit memory management,
FULL-W2V avoids contention among thread blocks over implicit caches to maximally reuse hot
data. The circular ring buffer also minimizes the amount of shared memory required to store all
necessary data for its full lifetime with relatively trivial overhead.

With this implementation, FULL-W2V can cache all values in context windows as soon as

they appear and accumulate updates in the shared memory until the word is no longer eligible to
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be a context word. The overall benefit is a further reduction of global memory accesses by %,
approximately 86% for W; = 3, or equivalently a 91% reduction over Wy = 5. In terms of the
GPU architecture, this reduces the overall latency and therefore the demand for latency hiding,

significantly improving on a key bottleneck.

4.4.3 Performance Implications
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Figure 4.2: Parallelism and effective data traffic in the memory hierarchy involved in a single context
window in the average case. Accesses are shown as size x (iterations), where 2W represents the number of
context words in a context window and N + 1 represents N negative samples and the 1 target word. The
colors correspond to how the traffic is related to Wombat (same = yellow, reduced = green, increased =
red).

By combining fine-grain parallelism and data reuse enabled by the aforementioned technolo-
gies, FULL-W2V has significantly improved ability to hide memory access latency, and is scalable
with GPU architectures. Figure 4.2 summarizes the resulting parallelism and effective data traffic
involved in one single context window in the average case, where this current window is in the middle
of sentence and share context words with multiple precedent and subsequent windows. FULL-W2V

is distinct from the state-of-the-art Wombat in two key measures.

e Full-lifetime explicit context and negative caching at the shared memory and register level,

respectively.

e Reduced traffic to each low memory level. FULL-W2V reduces access to L1/shared memory

cache by 50% and access to L2 cache and GPU device memory by 42% compared to Wombat.

These differences have several performance implications with GPU architectures and re-

sources. Our method of fine-grain work decomposition supports a high degree of parallelism, which
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is critical for memory intensive workloads such as Word2Vec to hide latency and improve instruction-
level parallelism. Meanwhile, the thread blocks and warps in FULL-W2V have far fewer accesses
to low level memory and thus experience fewer memory stalls, improving overall computational ef-
ficiency. Consequently, FULL-W2V is able to better utilize the computing resource and achieve
higher performance. Our experimental results provide detailed data to demonstrate these perfor-
mance gains.

FULL-W2V has scalable performance across multiple generations of GPU architectures.
New and more powerful GPUs constantly become available. They are typically equipped with more
and faster processing units or SMs, more scheduler units, larger caches, and higher bandwidth. Given
a newer architecture, FULL-W2V can automatically scale up the degree of parallelism to utilize these
additional SMs and provide eligible ready warps to be handled by more scheduler units. Equally
importantly, improved latency hiding, instruction-level parallelism, and reduced overall memory cost

cooperatively improve overall performance and execution efficiency.

4.5 FULL-W2V Design and Implementation

We implement a prototype of FULL-W2V for test and evaluation of our methodology. The
prototype materializes the methodology introduced in Section 4.4 as well as optimize the CPU-GPU

coordination.

4.5.1 CPU-GPU Coordination

There are two primary goals that require coordination between CPU and GPU devices.
The first goal is to ensure that the GPU remains occupied and utilizes its hardware to the greatest
possible extent as an accelerator. The second goal is to allocate the workload between devices in
such a way that the CPU handles all batch-related precomputation and indirected accesses that
would hamper GPU performance if it were instead performed within the kernel.

GPU Utilization. As with other GPU implementations, FULL-W2V partitions the
Word2Vec workload into a batching component on the CPU, and offloads the batches for training
on the GPU. In our implementation, the CPU-side workload includes precomputation (including
vocabulary setup and text-to-vocabulary translation), random sampling (particularly for negative

sample identification) and assembling sentence data and training metascheduling as batches in a
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Figure 4.3: The per-stream coordination in FULL-W2V. On each stream, S = 10,000 sentences (sent)
are sampled from the corpus and N = 5 negative samples (ns) are selected for each context window in each
sentence.

format that is amenable for GPU usage. The GPU-side workload includes training via execution of
the Word2Vec algorithm. The heterogeneous coordination is represented in Figure 4.3. Because (1)
this is a synchronous process, and (2) batches are relatively small relative to the total computational
capability of a GPU, we take advantage of NVIDIA Hyper-Q with CUDA Streams to allow many
cooperative CPU threads to batch simultaneously, launching GPU kernels executing in parallel to
saturate the GPU.

Workload Preprocessing on CPU. Similar to Wombat [28]|, the FULL-W2V batching
process includes sentence preparation and negative sample selection. Performing this work on the
CPU reduces the number of indirect memory accesses in Word2Vec that need to be performed on the
GPU and entirely eliminates GPU copies of several Word2Vec data structures, ultimately improving
memory access efficiency on the device. However, unlike Wombat, FULL-W2V does not expand
batches into context windows via the CPU. FULL-W2V instead uses the GPU to create windows
within the kernel as described in Section 4.4.2. Sentence and negative samples are provided as
constant memory to the kernel, allowing GPU hardware to utilize the constant memory buffer and
alleviate pressure on the cache hierarchy to better serve the model weights during training.

Additionally, FULL-W2V adjusts the traditional Word2Vec workload to facilitate more

consistent and efficient GPU utilization without impacting model quality. Typical Word2Vec pre-
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Table 4.1: CPU batching speed in millions of words/sec without memory transfers or kernels. Batching
speed can become a bottleneck for faster implementations of W2V.

Implementation | Text8 Batching Speed | 1bw Batching Speed
FULL-W2V 210.340633 265.212834
Wombat 16.957496 16.653851
accSGNS 16.527374 15.263448

processing treats all characters until a newline character as part of the same “sentence”. This creates
very large imbalances in sentence length that can lead to poor workload balancing on GPUs. To
address this, we maintain the sentence delimiter token but only terminate sentences upon batching
up to a fixed maximum sentence length or upon reaching the end of training data. This increases
the average length of sentences in our tested datasets and therefore the per-batch workload size,
incurring < 0.5% additional word pairings relative to other Word2Vec implementations. Due to the
trivial fraction of word pairings this creates and small context window size that is typically used in
Word2Vec training, we do not observe adverse impacts on the quality of learned embeddings but do
enjoy greater performance due to improved balance between parallel workloads.

Finally, we note that achieved batching speed is now important for the effective execution
of Word2Vec. Table 4.1 represents the rate at which GPU workloads are batched in millions of
words-per-second. Previously, GPU training speeds did not approach the CPU’s batching speed,
so the CPU performance in heterogeneous implementations was of negligible importance. However,
with FULL-W2V, we have accelerated the GPU training speed beyond that of previous CPU-side
batching and require improved CPU batching to maintain performance across the heterogeneous
system. Our improvements to batching speed are partially due to the algorithmic changes we
previously discussed. To further increase the batching speed, we memory map the training corpus
into the CPU and preprocess the text using the training vocabulary instead of performing string
conversion during the batching phase. Because the GPU holds all of the model weights during
training, the CPU can utilize its memory to store the converted corpus and leverage its own memory
hierarchy to accelerate batching speed. The greater batching speed from CPU allows the GPU’s
improved performance to remain occupied by useful work, and represents an upper bound on the

training speed that can be achieved by a particular Word2Vec implementation.
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Figure 4.4: The multi-level workload decomposition and parallelism of FULL-W2V. Multiple sentences
are batched for each CUDA stream, which launch grids with one thread block per sentence. Each thread
block parallelizes embedding layers to operate on pairs of words with many threads.

4.5.2 Parallelism Hierarchy

Maximizing the utilization of GPU architectures demands massive concurrency, particularly
for memory intensive applications like Word2Vec, to hide data access latency. FULL-W2V uses a
fine-grain, hierarchical parallel approach to meet this demand, as shown in Figure 4.4. The hierarchy
consists of three levels of parallel Word2Vec training: multi-sentence batch, a sentence and its current
context, and a pair of words or embedding vectors.

Batch: The training corpus is divided into batches and multiple batches are simultaneously
trained. This highest level is realized through CPU multithreading and Nvidia Hyper-Q CUDA
streams as discussed in Section 4.5.1. We recommend creating one CPU thread per logical core for
FULL-W2V. Each CPU thread iteratively manages batches and offloads the corresponding training
to the GPU via its own independent CUDA stream.

Sentence/context window: There are a number S of sentences in each batch concurrently
trained by a 1-d S GPU block grid. We parameterize the number of sentences S per kernel and use
S = 10,000 as an empirical baseline for performance on our systems. Due to the strict sequential
context window ordering, a sentence can only have one current context window, which slides over
one word at a step. This context window requires the embedding updates of its context words and
the negative samples. In our implementation, we pair one sample with all the context words and
calculate the updates, and then iterate over the samples.

Word pairing: As each word is represented as a vector, a word pairing involves vector
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operation, e.g., multiplication. The vector computations are parallelized among d threads in the
same thread block. This level of parallelism enables coalescing and broadcasting of memory accesses,
as well as cache availability. Because all threads within a block require adjacent vector items,
independent warps coalesce their accesses, while potentially making the same data available in
L1/L2 caches for other warps in collaborating thread blocks.

This hierarchical design can flexibly scale along multiple dimensions to provide strong
throughput guarantees under a variety of problem settings and port to new architectures without
source code modification. Our prototype implementation is capable of utilizing word pairing level
scaling to accommodate larger embeddings without modification and automatically gains speedup

on architectures with more SMs and warp schedulers.

4.6 Experimental Results

In this section we provide our experimental results to quantify FULL-W2V’s general per-
formance characteristics and success of our methodology at overcoming the challenges detailed in

Section 4.3.

4.6.1 Experimental Platform and Evaluation Method

We evaluate FULL-W2V on three generations of Nvidia GPUs: V100, Titan XP, and P100
with different processing and memory technologies in Table 4.2.

Our analyses compare the following Word2Vec implementations:

e FULL-Register is a GPU algorithm that implements the techniques described in Sections 4.4.1
and 4.5.

e FULL-W2V is an extension of FULL-Register that additionally implements techniques de-

scribed in Section 4.4.2, and represents our full contribution.

e pWord2Vec [38] CPU algorithm is closely related to FULL-W2V and is highly influential on
the design of many other Word2Vec works, providing a baseline of expected embedding quality

for Word2Vec under Shared Negative Sampling.

e pSGNScc [37] CPU algorithm has the greatest multicore CPU throughput on our systems
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Table 4.2: Word2Vec evaluation platforms.

Hardware GPU Specs CPU Specs
GPU: V100 80 SMs 2 20-core CPUs
Gen-6 Volta 14 TFLOP/s 2.40 GHz

16 GB HBM2 27.5 MB L3
CPU: Xeon Gold 6148 | 900 GB/s

Gen-6 Skylake

4 Warp Schedulers

GPU: Titan XP
Gen-5 Pascal

CPU: Xeon E5-2670 v3
Gen-4 Haswell

60 SMs

12.15 TFLOP/s
12 GB GDDR5x
548 GB/s

2 Warp Schedulers

2 12-core CPUs
2.30 GHz
30 MB L3

GPU: P100

56 SMs

2 14-core CPUs

Gen-5 Pascal 9.3 TFLOP/s 2.40 GHz
12 GB HBM2 35 MB L3
CPU: Xeon E5-2680 v4 | 549 GB/s

Gen-5 Broadwell

2 Warp Schedulers

with a unique batching mechanism to demonstrate state-of-the-art throughput for Word2Vec

on CPU architectures.

e accSGNS [29] GPU algorithm represents a somewhat naive benchmark for CPU-style

Word2Vec implemented on GPU hardware.

e Wombat [28] GPU algorithm provides a state-of-the-art GPU performance for SGNS utilizing

shared memory matrix multiplication and in-warp shuffle operations.

Corpora. Following existing literature, we evaluate the quality of generated embeddings
using the Text8 corpus [45] as well as the One Billion Words corpus [46]. Table 4.3 presents summary
details regarding each corpus under our experimental conditions. The Text8 corpus is commonly
used for benchmarking evaluations, while the latter includes much more text, allowing it to more
reliably predict downstream task performance on a much larger vocabulary [8]. Therefore we focus
on Text8 for throughput analyses and One Billion Words for quality analyses.

Evaluation Metrics. We evaluate the algorithms with two types of metrics.

Training speed and performance. We report multiple measures of performance including the
training throughput in words per second, and various fine-grain GPU performance data obtained
from the nsight profiling tool.

Training quality. We utilize Spearman’s rank correlation coefficient to compare the cosine

similarity of word vectors to human similarity judgements established in WS-353 [35] and SimLex-
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Table 4.3: Word2vec corpus information. Both corpi only train on words that are used at least five times
and are limited to up to 1,000 words per sentence.

Corpus Vocabulary Words/Epoch Sentences
Size

Text8 71,291 16,718,845 17,006

One Billion Words 555,514 804,269,957 30,607,795

999 [36]. We also use Hyperwords [44] to perform analogy reconstruction with cosine addition and
multiplication as in the famous Kings-Queens example, and utilize Mikolov’s original analogy set [10]
as analogy prompts.

Evaluation Procedure. For overall throughput and all embedding quality measures we
report the mean and standard deviation of five identical executions to reduce the impact of variance
inherent to the Word2Vec algorithm. All evaluations follow conventional Word2Vec hyperparame-
ters established in Mikolov et al. [10] with the following noted exceptions. All experiments use the
embedding size of 128, which equalizes GPU performance between all implementations by ensuring
each algorithm allocates complete warps and benefit equally from aligned global memory offsets
regardless of the thread block size used by any given kernel — the fundamental performance of
FULL-W2V and other GPU algorithms are largely unaffected by this choice. We allow each imple-
mentation to utilize one CPU thread per logical core on the platform. We allow 20 epochs of training
on the Text8 corpus, which was empirically determined to be sufficient for convergence across all

implementations; for similar reasons we train the One Billion Words corpus for 5 epochs.

4.6.2 Overall Performance

We first evaluate the overall performance benefits created by our algorithm. Figure 4.5 shows
the training throughput for each algorithm using the Text8 on each experimental architecture. We

make several important observations.

e FULL-Register on the XP architecture outperforms all prior works on any architecture and
has greater performance scaling cross-architecture than prior works. FULL-W2V on the older
P100 hardware nearly doubles FULL-Register’s XP performance (15.13 million words/sec vs
8.64 million words/sec), but FULL-W2V scales its own performance between architectures to

a similar degree as prior works.

e The margin of performance gain for FULL-W2V and FULL-Register over prior works increases
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Figure 4.5: Throughput in words/second on Text8 corpus on various architectures. d = 128, N = 5,
Wy =5.

with successive hardware generations. FULL-W2V is 6.754X and 5.910X faster than accSGNS
and Wombat respectively on P100 and 5.724X and 8.647X faster than the counterparts on
V100. FULL-Register is 1.741X and 1.523X faster than accSGNS and Wombat respectively
on P100 and 5.122X and 7.738X on the V100.

Only the FULL-W2V and FULL-Register GPU algorithms are capable of outperforming the
peak performance from state-of-the-art CPU algorithms. Only FULL-W2V can outperform
CPU implementations using the P100 GPU architecture, with greater performance gains on
newer and more powerful GPUs. AccSGNS on V100 cards achieves comparable performance
to the CPU-based algorithms, while Wombat has a lower performance than the pSGNScc
algorithm on all three CPUs for the Text8 benchmark and only reaches CPU performance on
V100 with the 1bw benchmark.

We also present the throughput performance for the One Billion Words corpus in Figure 4.6.

While this corpus is not traditionally used for throughput analyses, we note that once again how

FULL-W2V and FULL-Register attain higher throughputs when utilizing older GPU architectures

than prior works can achieve using newer GPUs. Once again, only FULL-W2V is able to outper-

form all CPU implementations using the P100 GPU, with additional performance gains on newer

architectures.

4.6.3 Method Evaluation

4.6.3.1 Addressing Memory Intensity and Latency

We observe that the register-exploited independence of negative samples in FULL-Register

results in significant reductions in DRAM demand compared to accSGNS, which has a similar access
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Figure 4.6: Throughput in words/second on One Billion Words corpus on various architectures. d = 128,
N =5, Wy =5.

Table 4.4: Memory demand in gigabytes-per-epoch collected via Nsight with the Text8 corpus for a fixed
number of epochs.

Implementation | L1/TEX L2 DRAM Sum
FULL-W2V 94.760 88.723 41.851 | 225.334
FULL-Register 885.065 781.576 66.555 | 1,733.196
accSGNS 1,134.448 493.614 | 226.578 | 1,854.640
Wombat 2,303.525 | 1,432.774 45.799 | 3,782.098

pattern to FULL-Register, eliminating 70.6% of the longest latencies in the memory hierarchy. The
lack of register caching and shared negative samples in accSGNS leads to much more data demand
than the lower level caches can satisfy. The memory hierarchies on GPUs are not as robust as CPU
memory hierarchies and have to handle much more parallel contention. Our work demonstrates that a
large portion of the memory demands of Word2Vec are not fundamentally important to the resultant
quality of embeddings and can be eliminated for performance gains. As a data-intensive algorithm,
reducing memory demand helps to circumvent the memory latency bottleneck of Word2Vec on GPU
architectures, contributing to the massive performance increases seen in Section 4.6.2 between the
FULL-Register and FULL-W2V implementations. The latency bottleneck is more pronounced on
older architectures, where fewer SMs with smaller caches and higher latency memory technologies
expose threads to longer access delays that are otherwise difficult for the architecture to hide with
other data-intensive work.

We further leverage latency elimination in FULL-W2V, which explicitly manages memory
with lifetime reuse of context words in addition to the negative sample optimizations. Table 4.4
shows that FULL-W2V reduces overall memory demand by 94.0%, 87.9%, and 87.0% over Wombat,
accSGNS, and FULL-Register respectively. The extreme reduction in memory demand on other

parts of the hierarchy is replaced by reuse in Shared Memory, guaranteeing L1 hit latency on each
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access that is not serviced by the rest of the memory hierarchy. This is important because the data-
intensive access pattern of Word2Vec is both sparse and highly stochastic. Under these conditions,
the GPU’s hardware-managed caches cannot be expected to provide proper eviction policies to
maximize reuse for the algorithm, but lifetime reuse of context words guarantees cache hits for the
Word2Vec algorithm for as long as can be statically known.

Memory latency is a complex facet of GPU performance, so we study its performance impact
as a composition of memory demand per cache level and the L1 cache read hit rates based on
Table 4.4. We note that the reduction in memory intensity is not wholly sufficient to explain FULL-
W2V’s performance, as FULL-Register on the V100 architecture is capable of high performance
relative to prior state-of-the-art with similar memory demand, however it is a significant source of
improvement provided by our work.

The GPU memory hierarchy on all studied architectures includes L1 and L2 caches backed
by DRAM for global memory accesses. The demand per cache level represents where the memory
access is ultimately resolved from while the hit rates determine how often a higher memory unit
is needed to fulfill accesses. The combination of shared negative sampling and independence of
negative samples in FULL-Register relocates about 22% of the memory demand in accSGNS from
L1 to L2 but simultaneously eliminates 70.6% of all DRAM accesses. With fewer L1 accesses and
register-allocated negatives instead of repeated global operations, the L1 hit rate in FULL-Register is
merely 11.70%. However, these misses go to L2 and rarely require DRAM, resulting in lower average
latency for L1 misses than accSGNS’s misses. The lifetime reuse of context words in FULL-W2V
then further reduces FULL-Register’s memory demand for L1, L2 and DRAM by 89.3%, 88.6%
and 37.1% respectively, requiring the fewest memory accesses across all levels of the GPU memory
hierarchy. The extreme amount of memory demand removed by lifetime reuse of contexrt words
significantly reduces the impact of memory latency on the implementation’s performance by entirely
eliminating the accesses in the first place or forcing them to be guaranteed hits in the program-
managed L1 cache. The L1 hit rate for FULL-W2V moderately improves to 20.44%. The dramatic
reduction in L1 and L2 demand relative to FULL-Register mean that most accesses are made with
minimal latency, allowing the hardware greater flexibility in scheduling computation to hide memory

access times and sustain high throughput.
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Table 4.5: Average Issue Eligibility per Warp Scheduler per Cycle.
architectures is 16. FULL-W2V is always near-peak occupancy and has near-ideal eligible warps, indicating
good latency hiding as well as scheduler saturation.

Maximum active warps on both

XP Architecture V100 Architecture
Wombat | accSGNS | FULL-Register | FULL-W2V | Wombat | accSGNS | FULL-Register | FULL-W2V
Max Warps 11.03 12 16 13 11.03 12 16 9
Active Warps 4.59 11.08 15.86 9.59 4.66 9.41 14.92 8.99
Eligible Warps 0.16 1.33 0.42 0.99 0.18 1.09 1.86 1.90

4.6.3.2 Managing GPU Resource Tradeoffs

We analyze our effectiveness in managing resource tradeoffs by examining scheduler and
thread-level statistics, starting with device processor and scheduler saturation. Table 4.5 shows
that FULL-W2V is within 99% of its theoretical occupancy, indicating both inter-SM and intra-
SM saturation of threads. Additionally, we can see that active warps are near-peak levels with
appropriate (near 1) eligible warps-per-scheduler on the both architectures. This indicates that
many warps are progressing on some operation, while a sufficient number of warps are available
for scheduling. High activity and balanced eligible warps is a good indication that our latency
reduction operations eliminated a sufficient amount of latency to justify a lowered overall occupancy
without harming our ability to hide the remaining latency and still improve overall performance.
This is also an indication that we can continue to scale to future GPU architectures, as we are
not approaching any current hardware limitations and FULL-W2V can scale to new SMs by simply
batching additional sentences per kernel.

We validate that our method reduces overall time spent on latency, we look at lower-level per-
thread metrics, including overall IPC and its constituent breakdown. Table 4.6 shows that, despite
improved performance, FULL-Register still spends a great number of cycles stalled on latency costs,
particularly long scoreboard memory operations. On both GPU architectures, the introduction of
lifetime reuse of context words nearly eliminates the cost of long-access memory, indicating that
we significantly reduce the memory latency performance bottleneck. In turn, IPC is drastically
increased, shifting much of the remaining time to compulsory overheads needed for algorithmic
integrity such as thread synchronization. This single-thread improvement is highly validating of our

overall throughput gains.
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Table 4.6: Instructions per Cycle and Thread Stall Breakdown. Arithmetic stalls include math pipe throttle
and MIO. Overhead stalls include wait, selection, barriers, dispatch, branch, no instruction, drain, sleep and
miscellaneous stalls. FULL-W2V shows significant improvements between hardware architectures, and also
nearly eliminates memory stalls through effective manual caching and data reuse.

XP Architecture V100 Architecture

FULL-Register | FULL-W2V | FULL-Register | FULL-W2V
IPC 1.19 2.78 2.38 3.22
Long Scoreboard 38.66 1.25 11.00 0.97
Short Scoreboard 4.49 3.43 4.19 2.95
Arithmetic 0.16 0.18 1.14 0.66
Overhead 13.05 10.48 7.93 6.35

Table 4.7: Mean embedding quality of five repeated trials using One Billion Words. Higher values are
better.

WS-353 | SimLex-999 | COS-ADD | COS-MUL
pWord2Vec 0.6070 0.3499 29.895% 29.166%
Wombat 0.5952 0.3596 29.661% 28.988%
FULL-W2V 0.5923 0.3582 29.775% 29.386%

4.6.3.3 Preserving Embedding Quality.

We evaluate the embedding quality of FULL-W2V and compare it against Wombat and
pWord2Vec as presented in Table 4.7. These counterparts use the nearly identical batching semantics
and negative sample reuse policies as FULL-W2V and thus create a fair comparison. FULL-W2V is
statistically equivalent to the results generated by both Wombat and pWord2Vec by every measure
of the training quality.

This positive result confirms that our algorithmic adjustments described in Section 4.4.2,
including fixed context window sizes, are valid. As demonstrated in [47], larger window sizes are
connected to divergence in learning quality between high and low-frequency words, but variance in

window sizes does not appear to be critical to generating quality embeddings.

4.7 Conclusion and Future Work

FULL-W2V advances the state-of-the-art single-GPU performance across multiple hardware
generations. We find that each negative sample in a collection can be independently updated over
context words without affecting embedding quality, however the sequential accumulation of con-
text word updates throughout sliding windows remains necessary for convergence. Based on these

findings, we improve the efficiency of fine-grain parallelism with highly effective memory access op-
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timizations — cache negatives in registers and context words in shared memory — to fully exploit
their reuse. We show that the combination of fine-grain parallelism, novel memory demand reduc-
tions, and data reuse optimizations can generate synergistic performance gains and benefits on GPU
hardware.

There are several directions for future work. There is a lack of understanding of the exact
limitations of negative sample reuse without adversely affecting embedding quality. FULL-W2V
and future algorithms can benefit from reuse of negatives over more than one context window.
Related work shows that altering sentence batching and negative sample selection increases limits of
guaranteed locality for additional performance benefits. FULL-W2V is positioned to explore such
benefits. Finally, FULL-W2V can be extended to support multiple GPUs on the same node to

further accelerate training and support large networks and corpus.

56



Chapter 5

Efficient and Transferable Multi-Scale

Performance Autotuning

5.1 Introduction

The arrival of diverse architectures in high-performance computing (HPC) systems has un-
locked many new opportunities and also permits existing applications to push beyond their former
limitations. In Chapter 3 we demonstrated opportunities that can be provided by new hardware and
in Chapter 4 we demonstrated opportunities that can be provided by improved software. Maximizing
system performance for a given application and system requires more than independent optimization
and is usually attained via performance tuning. Because hardware systems and software applications
frequently allow many potential optimizations, searching for the best configurations is typically too
expensive to be performed by hand or via exhaustive trial and error. Empirical performance tuning,
widely known as autotuning, is a promising approach that evaluates a small subset of parameter con-
figurations of a given kernel or application from a large user-defined search space by running them on
the target platform to identify the best-performing configurations. A sophisticated search algorithm
is often employed to intelligently navigate the large search space. Such autotuning approaches have
achieved success in several prior works [13, 12, 16, 48, 15, 49, 50].

Despite prior successes, however, autotuning has faced adoption challenges for real appli-

Portions of this chapter are based on work that was originally published in the Proceedings of the International
Conference on Supercomputing 2023 under the title “Transfer-learning-based Autotuning using Gaussian Copula”.
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cations because it is still resource expensive. Each empirical evaluation involves generating the
executable with the parameter configuration and actual execution. Even simple kernels may require
several hours to tune, while more advanced and complex applications with larger search spaces may
require days. To reduce the computational expense of autotuning, researchers have developed trans-
fer learning (TL) methods to leverage data from related autotuning tasks (e.g., similar input sizes
or kernels). Although the optimum for a kernel changes with input size, high-performing regions in
the search space are related across input sizes. This allows TL in autotuning to tune new input sizes
of that kernel efficiently.

Existing TL autotuning methods are ineffective for few-shot, i.e., a minimal number of
empirical evaluations, as they require many samples for new tasks to model the transfer relationship.
To overcome this issue, we develop a new generative autotuning approach that uses Gaussian copula
(GC), a data-efficient statistical model, to enable rapid TL autotuning. We use GCs to model
each configuration parameter’s distribution and codependencies. GCs permit generative tuning
via conditional sampling, which restricts sample generation to configurations to satisfy constraints
such as high performance for the input size or kernel of interest. Conditional sampling enhances
the explainability of generated configurations and improves the likelihood of success on transferred
problems. We enhance the GC’s ability to model the marginal and joint distributions of parameters
while mitigating its limitations for autotuning settings.

Our main contributions are as follows:

e A new generative modeling approach based on a data-efficient GC model, which enables few-
shot TL based autotuning with a small number of empirical evaluations for new tasks; a

generative modeling approach has never been developed or applied for TL autotuning before.

e Estimation of success probability for generative modeling to determine the necessary budget
to expect quality autotuning results; this is the first work that provides probability estimation

for TL autotuning.

e We demonstrate new performance insights for Polybench and Exascale Computing Project

mini-applications by utilizing few-shot autotuning.

e We demonstrate limitations of our techniques and prior art in multiscale tuning, providing

insights into current limitations and opportunities for future research.
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Our code is open source and available at https://github.com/tlranda/GC_TLA.

5.2 Model Selection and Background

Our generative modeling-based TL approach is based on the Gaussian Copula, a well-known
multivariate probability distribution in statistics literature. Copulas are a class of statistical model-
ing techniques that utilize the probability integral transform to decompose a multivariate probability
distribution into its marginal distributions and use a separate function to couple those distributions.
This means that the model distinctly represents each variable’s observed behaviors observed within
the data and separately models the between-variable interactions.

The Gaussian Copula model is a multivariate probability distribution that is trained to
reproduce the training data during unbiased sampling. Training begins by creating a normal dis-
tribution for each independent variable in the training data. Then, a covariance matrix models
the correlation between variables to represent all cross-variable interactions. The multivariate dis-
tribution is defined using the probability integral transform over the marginal distributions and
covariance matrix, which can be sampled with a zero mean vector to reproduce the training data in
expectation.

The Gaussian Copula also supports a method of inference known as conditional sampling,
wherein arbitrary constraints can be imposed to bias the process. Because the Gaussian Copula
distinctly models each variable’s component representation and the joint interaction between vari-
ables, conditional sampling permits very powerful and flexible adaptation at inference time. One
or more conditions, or limitations on the expression of a particular marginal variable, define the
imposed behavior for inference. The probability integral transform allows this condition to be ex-
pressed through the covariance matrix. This adjusts the covariance and all unconstrained marginal
variables, effectively tightening the scope of random generation to the remaining variance after the
condition has been satisfied. This biasing process permits intentional sampling of particular subsets
of the joint probability distribution without relying on rejection sampling.

We refer the reader to the work of Masarotto and Varin [51] for a more detailed mathematical
exposition of the statistical model and mechanics. As a simple example within autotuning, suppose
we have two variables: the input scale and a tunable parameter. A GC trained on this data learns

to represent the distribution of each variable’s values independently, then how those values tend to
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correlate with one another. When sampling from the GC with a zero-mean vector, we can assume
that many instances from the training data will be directly reproduced. During training for the
transfer learning problem, we will have multiple input scales present within the data. However when
we transfer to a particular input scale, any samples that are generated for other input scales are
irrelevant and would normally be discarded. This is called “rejection sampling” and is a necessary
component of many deep-learning sampling regimes. However, conditional sampling allows us to
constrain one or more variables, including the input scale. When sampling with an input that is
conditioned to be an exact value, the resulting outputs capture the expected variation in the tunable
parameter given the fixed input scale. This means that every sample we produce at inference time
will describe the input scale we seek to tune and rejection is not required, greatly increasing the
efficiency of sample generation. Furthermore, the overhead of conditional sampling is constant with
respect to the number of samples we generate because the probability integral transform only needs

to be performed once.

5.2.1 Advantages over Alternative Generative Models

CopulaGAN [52], CTGAN [53] and TVAE [53] are two alternative generative models that
have previously been proposed for synthetic data generation, including similar capabilities to support
constrained data generation like the GC. These models are designed to scale their fitting capabilities
to available data, but in autotuning we often have limited data that does not permit this advantage
to materialized. Furthermore, these techniques are often computationally inefficient when driving
searches. Table 5.1 demonstrates the inference latency of these models; GC has the lowest latency
of all, which is comparable to purely random sampling.

Table 5.1: Time required and observed rejection rates when generating 1,000 unique samples using various
techniques. Conditional sampling with the GC has latency similar to random sampling but represents learned
relationships without ill-conditioned data.

i Sample Reject Reason (%)
Method | Time (s) Acceptance Rate | Repeated | Ill-Conditioned
Random 0.24 90.8% 9.2% 0%
GC 0.52 37.87% 62.13% 0%
CTGAN 1.28 4.8% 7.33% 87.87%
TVAE 80.77 0.05% 2.25% 97.70%

The GC’s advantage in latency is partially due to the acceptance rate of generated samples.

The separation of joint and marginal models permits the GC to satisfy constraints before generating
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other values, so only repeated parameter configurations are removed from its generated configu-
rations. While many more duplicates are generated compared to random sampling, the overall
acceptance rate is nearly 10 times larger than CTGAN. Some other models, such as the Copula-
GAN [52], can also utilize conditional sampling; however, it can fail to generate any configurations
when prompted to produce out-of-distribution data, which is important for transferring tuning to
new tasks.

CTGAN and TVAE generate excess samples and then employ filters to discard ill-
conditioned data. These methods are computationally inefficient. While relaxing constraints can
help reduce their generation latency, it comes at the cost of compromising the quality of the gener-
ated data, which no longer best fits the desired task. This supports our choice of the GC model for
few-shot transfer learning autotuning scenarios, where both latency and utility are crucial factors to
consider.

In summary, we use the Gaussian Copula because it provides us with the following key

advantages for HPC transfer learning autotuning:

e Minimal Training Data. Technically, a joint probability distribution can be meaningfully
formed from as few as two data points. Data is limited within HPC and deep-learning ap-

proaches that scale to data availability are prohibitively costly to use in many scenarios.

e Inference Control. Conditional Sampling permits highly specialized and compute-efficient
inference. This increases the utility of biased inferences from the model while reducing over-
head relative to other model choices, especially when generating values that must represent a

particular portion of the learned distribution.

e Known Statistical Properties. The model is highly explainable, permitting deeper analyses
of its strengths and weaknesses. We will later demonstrate how the probability model permits

effective forecasting of a trained model’s capabilities prior to using it in a new domain.

5.3 Few-Shot Autotuning Framework

The key idea of our TL approach is to leverage the GC to predict high-performing configu-

rations on related tasks in few-shot autotuning.
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Figure 5.1: TL-based Autotuning Framework Using GC. TOP: Model Training, which uses GC
to train fitted models with data collected from source tasks (multiple input sizes of an application) in a
human-designed tuning space. BOTTOM: Model Inference, which uses the fitted GC models to propose
high-performing configurations for new tasks and evaluates them.

Our proposed method consists of two phases: model training and model inference, as shown
in Figure 5.1. Model training uses GC to fit data collected from source tasks in an expert-defined
tuning space. In our work, the source tasks correspond to different input sizes for the same ap-
plication, and the tuning space is specified via application source code annotation and predefined
parameter values. The source tasks, tuning space, and source input sizes are presented to an exist-
ing autotuner [16, 50, 54, 55, 56, 57, 58] with a fixed evaluation budget to collect a small, quality
training dataset of empirical performance. Model inference uses the fitted GC model to propose
high-performing configurations for new tasks, which are then empirically evaluated. We discuss the

modules in greater detail in the remainder of this section.

5.3.1 Model Training

Autotuning problems require experts to delineate key high-level features. The GC also
requires several interventions to permit its general usage in autotuning and to improve its utility as

a few-shot TL autotuner.
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5.3.1.1 GC for Autotuning

We make several adaptations for GC to generalize it for the autotuning problem.

Variable Preprocessing Standard GCs model real variables but do not model mixed-integer
(discrete, integer, and categorical) variables. To address this issue, we adopt a new GC approach
proposed for synthetic data generation [59]. In this GC approach, numeric variables (real or integer)
are modeled by truncated Gaussian distributions, and categories are reordered by their frequency
in the fitting data. The GC also reduces the bias from distribution shape by converting all variable

distributions to standard normal distribution before computing covariance.

GC as an Transfer-Learning Autotuner GC can be used as an transfer learning autotuner
given a dataset of observed configurations in a defined tuning space. The trained model will cap-
ture the underlying distribution of input scales and tunable parameters independently and jointly.
Conditional sampling will allow us to generate new samples through the probability integral trans-
form for a given input scale. This includes input scales that were not included in the training data,
which follow the expected covariances to predict marginal behaviors on new tasks. The generated
configurations can be empirically evaluated to determine their fitness. We note that unlike other
autotuning techniques, the GC does not utilize iterative feedback. This is because the samples are
generated from the distribution, so re-training as additional samples are collected only serves to

reinforce the models’ biases and reduces variations.

5.3.1.2 GC Model Fitting for Few-Shot Tuning

Unlike existing TL autotuning methods, the GC does not require extensive or exhaustive
datasets. Because the model does not attempt to regress against the performance relationship, it
can scale down to whatever data is available. However, the GC also lacks a mechanism to disfavor
parameter configurations with subpar performance, meaning that it is not inherently selective. We
attempted to see if the performance relationship could be conditionally sampled to any affect from
the model, however as may be expected the performance relationship is too complex for the GC to
effectively model. Nevertheless, we can intentionally filter the data used for training based on known
performance and fit the GC only to the highest-performing configurations. In the TL setting, GC-

based autotuners generate high-performing configurations immediately and minimize the exploration
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of low-performing regions. Because the GC separately models each variable and between-variable
correlation, it is capable of modeling changes with respect to input scale, provided these changes are
somewhat continuous in nature. As such the performance data from source tasks are only needed
to select the training data for the GC; modeling the expected performance is empirically observed
to be non-destructive, but we do not recommend including the performance objective in the GC’s

trained variables as it is of negligible utility.

Quantile Filtering We investigate dataset filtering based on performance quantiles to include
only top-performing configurations in the training data for GC modeling. The best quantiles should
result in a training data subset with similar distribution for high-performing configurations while
maintaining ample tuning space coverage. By tuning space coverage, we mean the proportion of
the original search space that can be generated through arbitrary combinations of variable values
observed during sampling. We collect a number of samples from the GC equal to the original search
space size — samples are not guaranteed to be unique — and consider any generated value to
be “reachable” by the GC under some conditions. If the GC never generates a particular variable
value in this manner, it is vanishingly likely that any configuration including that value can ever be
generated by the GC, reducing the proportion of the tuning space that can be covered by the model.

To motivate the need for the proper threshold quantile, we present a brief analysis from an
exhaustively tuned Syr2k task using Kullback-Leibler (KL) divergence [60], a statistical measure
of the difference between two probability distributions. Zero KL divergence indicates that the
compared distributions are identical; increasing differences between compared distributions increases
divergence. We also analyze the tuning space coverage based on the filtered dataset since filtering
can prevent some configurations from being generated.

Quantile filtering cannot be too aggressive. As shown in Table 5.2, the tuning space coverage
decreases gradually at first but decreases dramatically (i.e., 0.82 to 0.07) when the filtering quantile
decreases from 30% to 20%. The significant decrease suggests that a majority of parameter options,
especially categorical parameters, have been eliminated. This proportion of the search space still
includes 745 configurations which is much more than the few-shot evaluations we intend to perform.
However, the KL-divergence is also shown to dramatically increase, indicating that the extreme
tightening of coverage has eliminated many of the best candidates from consideration. Divergence

decreases with fewer quantiles as the model becomes more precise, however this particular quantile
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Table 5.2: The tuning space coverage and average marginal KL divergence of quantile-based filtering for
the Syr2k benchmark. The KL divergence is calculated using the top 10% of all configurations as a reference,
obtained through brute-force.

Filtering Tuning Space KL
Quantile (%) Coverage Divergence
100 1.00 0.1878
90 1.00 0.1713
80 1.00 0.1609
70 1.00 0.1525
60 0.91 0.1409
50 0.91 0.1212
40 0.91 0.1333
30 0.82 0.1713
20 0.07 0.2766
10 0.06 0.3079

requires more precision than the GC and its training data are capable of providing, leading to poor
outcomes.

Reducing KL divergence as the coverage decreases will increase the likelihood of sampling
optimal configurations by redistributing the sampling probability from suboptimal areas of the space
to regions that closely resemble near-optimal configurations. Based on this trend and our experi-
ments, we recommend using less than 50% of the original tuning data to exclude low-performing
characteristics from prior data. This excludes many evaluations that prior autotuners made to inform
the surrogate model rather than to improve the best-known optimum. We empirically determine
across our benchmarks and training data that at least a 15% filtering quantile is needed to avoid
over-specification. We utilize the top 30% of prior data in all of our experiments to ensure adequate

information is available for complex tuning tasks without overly harming the tuning space coverage.

5.3.2 Model Inference

The fitted GC model represents learned distributions that can be used for inference, but
additional steps must be taken to utilize it as an effective TL autotuner.
5.3.2.1 Conditional Sampling

Quantile filtering increases the likelihood that a sampled configuration from the GC will
reproduce optimal traits in new tasks, but this fails to respect the specific tuning needs for different

tasks. Meaningful transfer between tasks requires us to label fitting data with a representation
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of the task, t. As previously discussed in Section 5.2, conditional sampling allows us to imposes
arbitrary constraints on the model during generation. We conditionally sample on the input scale
to sample the remaining variance via tuning variables, prompting the GC to reconstruct the best-fit
distribution it learned for the indicated task. If that task was not observed in prior tuning, the same
model mechanisms “recover” a transferred relationship for the new task by projecting the learned
relationship between tasks onto the marginal variables. Because the GC is trained on filtered high-
performing source data, conditional sampling generates configurations that are expected to perform

well for the transferred task.

5.3.2.2 Managing Probability of Success

The success rate for generative autotuning is subject to randomness, even though the trans-
ferred distribution is biased toward values that are expected to be near-optimal. Therefore, it is
crucial to understand the probabilities involved in GC generation to determine whether the technique
is appropriate and what evaluation budget is necessary to expect a certain threshold of success.

The GC’s autotuning process samples k unique configurations from a distribution that spans
|C| potential candidates. Within the population C are |I| ideal candidates, which are optimal or
near-optimal. Frequently, the top 1% of evaluations in real-world benchmarks have nearly equivalent
performance, so we consider I to be the set of configurations that have global fitness in the top 1%
of all configurations C. Identifying one or more of the candidates from I within the budgeted k
trials is an acceptable goal for few-shot TL autotuning. The probability that one or more such ideal
candidates are selected within k trials is hypergeometric sampling, described by Equation 5.1:

. S (09
P(#Optimal > 1) = Z (\CI) . (5.1)
i=1 E

If we fit all source task data and |C| is the size of the entire configuration space, then
sampling the top 1% of performance within a few shots is unlikely. For example: random sampling
would require 70 trials for a 50% chance of sampling just one such configuration in expectation;
95% confidence of observing one ideal candidate would require 300 unique random samples. Using
quantile filtering on the source data for the GC can make some configurations statistically improbable
or impossible to generate, eliminating them from the search. These excluded configurations are

expected to be suboptimal because they fail to exhibit characteristics common with known optimal-
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like data from source task tuning.

Eliminating suboptimal configurations with quantile filtering reduces the size |Cgc| of con-
figurations the GC may generate. Recall from Table 5.2 that the tuning space coverage decreases
dramatically after a certain quantile. The best filtering quantile will minimize KL divergence from
the optimal distribution and limit the size of |Cqc| without overspecifying the search space since
the latter also contributes to the probability of the few-shot success. We can determine the reduced
|Cac| from the GC by estimating the number of unique samples generated by the fitted GC. It is
possible that this reduction excludes some ideal candidates, meaning that |Igc| < |I].

The exact reduction in |I| represented by |Igc| is unknown but we may estimate the oppor-
tunity cost of some optimal configurations being removed by reducing |Igc| by a factor of the ratio
between |C| and |Cgc|. For our experiments, we cautiously assume 5% of the eliminated configura-
tions from C' are also members of I — this is five times the naively expected rate. With adjusted
|Cacl and |Igc|, the value of k in Equation 5.1 can be increased until the probability meets a desired
confidence level. This provides an adequate budget of evaluations k£ that generates one or more ideal
candidates with probability equal to the specified confidence (e.g., 95%). This budget-engineering
calculation operates similarly to a convergence guarantee because it permits evaluations of the GC’s

viability via the size of its budget constraint without performing any empirical evaluations.

5.3.3 Addressing Limitations for Autotuning

Even with our modifications, a few of the known limitations of GC models have limited

significance in our intended use case of TL autotuning for source code annotations.

5.3.3.1 Underfitting Cross-Variable Dependencies

The GC expresses codependence between variables using linear correlation, which will un-
derfit complex variable codependencies. The GC’s correlation is expressed between variable pairs, so
the number of simultaneously interacting variables is less important than the complexity of depen-
dence between variable pairs. In most cases for source-code autotuning, annotations are functionally

independent of one another or adhere to the linear correlation that the model can express.
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5.3.3.2 False Ordering and Transitivity for Categories

The GC'’s linearized representation of categorical values implies and attempts to leverage a
total ordering that may not exist between categories. This creates transitive relationships that may
prove counterproductive for the marginal optimization of categorical data. One way to counteract
this behavior is to utilize binary expansion or one-hot encodings for each category, but this can
create many variables when applied to large categories. Many source code annotations consist of
only two values, such as the presence or absence of a #pragma annotation, which limits the variable
to two categories. Other categorical variables in annotation autotuning are limited to fewer than

ten values, which bound the error that marginal kernels must overcome to acceptable degrees.

5.3.3.3 Model-Fitting Complexity

Fitting a GC has cubic time complexity based on the number of variables due to the joint
covariance model. Other TL methods gain a competitive edge when the GC models fifty or more
variables, which can make some modifications, such as one-hot encoding, less desirable in practice.
Source code annotations pose some inherent limits on the number of tunable variables due to the
decreasing performance significance of additional, non-bottleneck optimization points in an appli-
cation. Larger applications require explicit measures, such as importance sampling, to identify the
most critical variables to tune. Our current techniques continue to rely on experts for annotation

and can also rely on them to curate an appropriately sized set of variables.

5.4 Experiment Design

We evaluate our method and several existing techniques in few-shot TL autotuning with a

variety of benchmarks empirically evaluated on a real system.

TL Autotuning Benchmarks We use source code modifications to the Polybench 4.2 [14] bench-
mark suite and several Exascale Computing Project (ECP) proxy mini-applications to evaluate our
GC autotuning methodology. The Polybench and ECP benchmarks are multithreaded, and one
(SWLite) is a GPU-accelerated program. The selected applications are based on our ability to de-
fine valuable optimizations in our tuning spaces, ergo we do not consider every application within

either suite.
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Polybench consists of numerical computation kernels extracted from various application
domains. We utilize six of the most complex benchmarks spanning the application domains of linear
algebra, image processing, stencils, and data mining: Syr2k, 3MM, Heat-3d, LU, Covariance, and
Floyd—Warshall.

The ECP proxy applications represent essential computational kernels from high-
performance computing programs, allowing for highly effective performance analyses and tuning
without requiring the time-intensive execution of the entire application. We include four mini-
applications — AMG, RSBench, XSBench, and SW4Lite — which feature different compute-memory
access ratios and memory accesses patterns.

We parameterize each kernel with source code modifications in performance-critical sec-
tions of the benchmark that may improve performance. These modifications include tile sizes, loop
optimization techniques, parallelization and scheduling strategies, data allocation formats, and mul-
tiprocess synchronization frequencies. Table 5.3 shows the number of unique parameters in each
experimental benchmark as well as the combinatoric search space size of all possible parameter
configurations. The largest search space has over 5 million potential configurations. The tuning
spaces for Polybench and ECP applications are described in greater detail in Tables 5.4 and 5.5,

respectively.

Source Tasks and Training Dataset To form the prior knowledge for TL autotuning, we use
offline autotuning through YTOPT [16] to collect 200 evaluations in each of three non-target tasks:
small, medium, and large. We use YTOPT with the Random Forest backend for source task tuning
because it can be explicitly tuned to balance the degree of exploration (variability within the tuning
space) and exploitation (optimization refinement) via a simple hyperparameter, ensuring the limited
training data both informs techniques about the near-optimal performance while also representing
some broader information about the performance relationship. The YTOPT autotuning is configured
to target 90% confidence in establishing the 50" quantile of performance. This forms a highly
valuable training dataset for all techniques, but we limit these searches to 200 evaluations per task,
no more than 5% of the search space coverage for any benchmark.

Table 5.3 summarizes the tuning spaces of source tasks and includes the GC’s predicted
evaluation budget based on filtered source data. The prediction is based on the model’s capability

to identify one or more evaluations in the top 1% with 95% confidence, assuming that as much as 5%
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Table 5.3: Tuning spaces for each benchmark alongside the GC’s coverage and budget based on the top-
30% of source evaluations. Specific parameters are described in Tables 5.4 and 5.5.

Benchmark #Params | # Configurations | GC Coverage | GC Budget
3mm 10 376,320 ~ 2,500 -
Covariance 5 5,324 ~ 110 —
Floyd—Warshall 5 5,324 ~ 1,800 15
Heat3d 6 10,648 ~ 1,600 8
LU 5 5,324 ~ 210 -
Syr2k 6 10,648 ~ 800 3
AMG 9 1,180,980 =~ 108,500 5
RSBench 9 5,196,312 ~ 316,800 3
XSBench 8 577,368 ~ 77,500 7
SWdlLite 8 4,752 ~ 1,800 15

Table 5.4: Parameters used to tune Polybench Kernels. Values within brackets indicate the options
available for an independent parameter, and a list of brackets represents multiple independent parameters.

Parameter 3MM Covariance Floyd-Warshall Heat3d LU Syr2k

Tilo Sizes [4-2048], [4-2048], | [4-128], [4-2048], | [4-128], [4-2048], | [4-128], [4-2048], | [4-128], [4-2048], | [4-128], [4-2048],
[4-2048] [4-256] [4-256] [4-256] [4-256] [4-256]

Loop Interchange [Yes, N/A] [Yes, N/A] [Yes, N/A] [Yes, N/A] [Yes, N/A] [Yes, N/A]

Array Packing [Yes, N/A] x 6 [Yes, N/A] [Yes, N/A] [Yes, N/A] x 2 [Yes, N/A] [Yes, N/A] x 2

of pruned configurations were potentially optimal. A dash represents an unknown budget, where the

overall problem size is reduced to such a degree that it is impossible to predict a budget requirement

using Equation 5.1. In this case, the GC’s tuning space coverage could fail to include the optimal

region if the transfer relationship is poorly informed. Hence, we cautiously treat indeterminate

budgets the same as few-shot TL for techniques that cannot determine their own budget, and we

determine how well the GC can perform using the same budget as prior techniques.

1 Specifically unroll loops by a factor of 6 iterations

Table 5.5: Parameters used to tune ECP mini-applications.

Parameter

AMG

RSBench

XSBench

SW4Lite

Tile Sizes

[10-200], [2-256],
[2-256], [10-200]

[2-256], [2-256]

[2-256], [2-256]

Optional Parameters

Parallel For

Parallel For

Parallel For

Parallel For, Nowait,
MPI Barrier

Parallel For Schedule — [100-2000], [10-200] [10-160] [dynamic, static|
. . unroll (6) T, unroll,
Unrolling Options [unroll, N/A] [unroll, N/A] [unroll, N/A] [ no(—u)nroll]
# Threads [4-8] [2-256] [2-256] [2-256]
|compact, scatter, [compact, scatter, [compact, scatter,
KMP Affinity balanced] balanced, none, balanced, none, —

disabled, explicit]

disabled, explicit]

OMP Proc Bind

[close, spread, master]

OMP Places

[core, threads, sockets]

[core, threads, sockets]|

[core, threads, sockets]

[core, threads, sockets]|
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Compared Approaches We evaluate the following autotuning approaches to demonstrate our

advantage in comparison to prior art:

e Baseline. Parameter values are taken directly from their respective sources; no parameter
tuning is performed — this configuration represents one particular option within the tuning

space and is selectable by all other techniques.

e Bayesian Optimization. Bayesian optimization (BO) without TL using YTOPT [16, 12, 13].
The autotuner utilizes a random forest surrogate model and a hedged Gaussian process to
evaluate the expected improvement of proposed configurations. We utilize the same tuning
hyperparameters as those used during source task collection, representing the capability of

“starting from scratch” without transfer learning.

e GPTune DTLA. GPTune [15] with DTLA is a state-of-the-art autotuner that is capable of
utilizing TL using a neural joint model to combine Gaussian processes representing individual
parameters. Following the original paper authors’ recommendations, we allocate the first half
of the evaluations to be randomly sampled, then use GPTune’s MLA to tune for the remaining

half of the tuning budget.

e Gaussian Copula (ours). A GC is fit to the top 30% performing data from source tasks,
then conditionally sampled on the target task to generate configurations. We determine the
predictive budget but go beyond it to the maximum number of evaluations produced by other

autotuners to demonstrate the reliability of the predictive properties.

Autotuning Procedure Each benchmark has three source task sizes (small, medium, and large)
based on given magnitudes of performance-scaling input features. For the Polybench benchmarks,
these sizes are pre-defined scales given for each benchmark; for the ECP mini-apps, we determine
various inputs that are separated by similar scales of performance. We utilize transfer learning for
each compared technique to optimize three novel target task sizes: small-medium (SM), medium-
large (ML), and extra-large (XL). The first two target task sizes represent interpolations between
source tasks, and the final target task is an extrapolation beyond the scope of source tasks. The
Polybench/C applications define the extra-large task size but not the small-medium or medium-large
sizes; for these, we linearly interpolate between the indicated sizes to produce new tasks. We also

define the input sizes for the ECP target tasks, following similar scaling patterns for all three sizes.
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While GPTune can optimize multiple target tasks simultaneously, we ignore this capability
for fairer comparison to other works that only tune for one target size at a time. None of the compared
techniques perform cross-benchmark training, so each target size is tuned independently with only
training data from source tasks of the same benchmark. In order to permit the fairest possible
comparison among different techniques, the same source dataset is presented to each transfer-capable
technique in the appropriate format for each technique, but the GC filters source datasets for its
benefit as described in Section 5.3.

We permit each autotuning technique a fixed budget of at most 30 evaluations per target
task. To mitigate the variance of empirical measurements on the system, during both source and
target task tuning, each code configuration is compiled once and evaluated three times as a “single”
evaluation for purposes of tuning budgets. The autotuning objective is reported as the mean of the
last two evaluations, with timing data collected internally within each benchmark to ensure that
overheads such as process startup and data initialization are excluded. In order to mitigate the
variance of randomness employed by each compared tuning technique, the entire few-shot tuning
process is repeated with three random seeds and results are reported using the average across all
seeds. Even when the GC can predict a viable budget of fewer than 30 evaluations shown in
Table 5.3, we collect all 30 and specifically note the intermediate results when the predicted budget
is exhausted. Since we expect TL techniques to extract some understanding of the problem from
prior data, we evaluate success primarily based on the best-observed performance among the limited

target task evaluations.

Experimental Platform All experiments are conducted on a Linux machine with 320 GB 2x
AMD EPYC 7742 64-core processor (128 total cores) 1 TB DDR4 with Ubuntu 20.04.2 LTS. The
machine also includes a 40 GB NVIDIA A100, which we use for evaluating the GPU-based SW4Lite
ECP application. Measurements of elapsed time during the tuning process include time for sam-
ple generation, source code compilation using the Clang compiler, and program execution. Each
benchmark internally measures empirical performance.

Because the tuning spaces we defined express optimizations through Polly [61], a loop opti-
mizer for LLVM, we use a Clang compiler (version 13.0.0) for compilation. However, any compiler
that supports Polly is suitable for replicating our experiments. Some Polly optimizations can be

applied heuristically based on analysis of the LLVM intermediate representation, while others can
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be induced by programmer-supplied #pragma directives in the source code. Currently, not all code
transformations can be specified by directives, such as unroll-and-jam, loop fusion, and code motion.

For this reason, two of our applications (3mm and LU) adopt heuristic optimizations.

5.5 Input-Scaling Experiments

We separate the presentation of our results between the Polybench and Exascale benchmark
suites and identify key successes and limitations of our technique compared with the state-of-the-art

approaches.

5.5.1 Polybench Autotuning

The Polybench benchmarks demonstrate several different behaviors for generative auto-
tuning with the GC, including aggressive space pruning, uncertain optimization signals, and high-

confidence benchmarks that represent a best-case scenario for the technique.
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Figure 5.2: Observed speedup vs. log-scale elapsed time for few-shot TL autotuning. The dotted lines
indicate results trimmed to the GC’s predicted budget.

General results for the Polybench benchmarks are presented in the upper portion of Ta-
ble 5.6. On the 3MM XL task, the GC yields an additional 12.81x speedup (i.e., 33.39x vs.
20.58x) compared with prior autotuning techniques. In half of the Polybench tasks, the GC’s first
evaluation outperforms the best tuning result discovered by BO or GPTune. When we utilize the
GC’s expected budget or the maximum number of evaluations whenever the budget is undefined,
the GC outperforms GPTune and BO in over 80% of all tuning tasks. Even on tasks where the GC
does not outperform prior work, the peak speedup sampled by the GC is within 5.5% of the peak
performance sampled by prior work.

The GC is highly successful both on its first evaluation and within its allotted evaluation

budget because of the effectiveness of its search space reductions and distribution transfer through
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Table 5.6: Autotuning results after a maximum of 30 evaluations; results are averaged across three repeated
tuning attempts with unique seeds.

Peak Speedup (# Evaluation Discovered)
App. Scale GC BO GPTune
18t Budget Best Best Best

SM | 5.09 | 570 (23) | 5.70 (23) | 3.03 (26) | 5.53 (30)

SMM | ML | 525 | 557 (29) | 557 (29) | 3.20 (30) | 5.16 (16)
XL | 27.10 | 33.39 (18) | 33.39 (18) | 20.58 (30) | 18.96 (25)
SM | 21.10 | 21.98 (21) [ 21.98 (21) | 21.83 (28) | 13.30 (30)

2| Cov. ML | 413 | 4.27 (26) | 4.27 (26) | 3.87 (25) | 4.07 (30)
3 XL | 23.04 | 2396 (2) | 23.96 (2) | 8.43 (12) | 17.88 (9)
< SM | 1.0l | 1.02(17) | 1.02 (17) | 1.02 (20) [ 1.01 (26)
<= | FloydW. | ML | 102 1.02(1) | 1.02(1) | 1.01(25) | 1.01(3)
5 XL | 0.99 | 1.00(29) | 1.00 (29) | 1.01 (16) | 1.01 (20)
£ SM | 1.83 | 2.03(5) | 2.06 (18) | 2.21 (15) | 2.30 (28)
S| Heat3d | ML | 1.89 | 1.89 (1) | 2.06 (10) | 2.12 (25) | 1.80 (6)
XL | 1.50 | 292 (@2) | 3.00(18) | 2.16 (13) | 2.75 (29)

SM | 1.6 | 1.8 (25) | 1.18 (25) | 1.12 (30) | L.IL (19)

LU ML | 115 | 120 (24) | 1.20 (24) | 1.17 (26) | 1.19 (5)

XL [1.000] 1.00(3) | 1.00(3) | 0.98(13) | 1.00 (29)

SM | 206 | 290 (2) | 3.32(18) | 2.34 (12) | 2.41 (11)

Syr2k | ML | 080 | 117(2) | 1.22(16) | 0.93 (29) | 0.85 (30)

XL | 095 | 1.09(2) | 1.09(2) | 0.42(23) | 0.85 (26)

) SM | 087 | 091(3) | 001(3) [ 092 (19) | 0.90 (19)
£ AMG | ML | 093 | 093(1) | 093(1) | 0.93(20) | 0.7 (3)
5 XL | 095 | 095(5) | 0.98(23) | 0.97(27) | 0.93 (25)
~ SM | 140 | 140 (3) | 140 (8) | 1.25(29) | Li3 (22)
2| RSBench | ML | 1.02 | 1.04(2) | 1.04(15) | 0.97 (22) | 104 (27)
g XL | 1.00 | 1.00(1) | 1.01(10) | 0.97 (14) | 1.02 (18)
z SM | 1.20 | 1.20(7) | 121 (28) [ 1.17 (24) | L.21 (24)
S | XSBench | ML | 1.05 | 1.06 (4) | 1.06(4) | 1.04 (6) | 107 (5)
g XL | 1.01 | 1.02(5 | 1.03(24) | 099 (6) | 105 (5)
: SM | 0.99 | 1.00(6) | 1.00(6) | 0.98 (26) | 0.99 (17)
5| swarite | ML | 099 | 099 (10) | 099 (16) | 0.99(3) | 099 (30)
XL | 099 | 099 (12) | 0.99 (12) | 0.99 (1) | 0.99 (14)

conditional sampling. Both GPTune and BO must allocate portions of their evaluation budget to
explore the space and refine the model’s transfer or general surrogate knowledge. The GC does
not need to perform these subpar evaluations, and immediately focuses on leveraging source data
to locate and improve the optimum of the transfer task. This focus allows the GC to be extremely
aggressive in the few-shot tuning, as shown in Figure 5.2 where nearly every proposed evaluation of
the GC outperforms all evaluations proposed by other tuning methods.

The GC prunes spaces for 3MM, Covariance, and LU too aggressively for us to predict an

evaluation budget. Our results demonstrate that the GC still identifies the best speedup across
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Figure 5.3: Ambiguous responses to tuning yield minimal speedup, but the GC remains competitive with
prior work.

all techniques in all tasks for these benchmarks when given the same tuning budget allocated to
other techniques. The search space reduction performed by the GC outperforms prior autotuning
by properly identifying characteristics of optimal configurations across tasks and correctly modifying
these relationships for each target task.

The Floyd—Warshall and LU benchmarks are challenging for any autotuning technique to
optimize. Without exhaustive data for these benchmarks, it is unclear whether this is due to the
original source code parameters being near-optimal or the tuning space exposing mostly unhelp-
ful alterations to the benchmark source. Critically, the GC still produces highly consistent and

comparatively valuable results on each evaluation, as shown for the LU benchmark in Figure 5.3.
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Figure 5.4: Brute-forcing the Syr2k XL task proves that the GC and GPTune can identify the global
optimum in 30 evaluations, but the GC avoids poor evaluations, giving it better average performance.

To ensure that few-shot TL autotuning is effective, we brute-force all configurations of the
Syr2k XL task in Figure 5.4. Both the GC and GPTune closely approximate the global optimum

within a few shots. However, all evaluations proposed by the GC are near-optimal, while other
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methods require repeated exploration of poor-performing regions to identify their transfer relation-

ships.

5.5.2 [Exascale Miniapplications Autotuning

The selected exascale benchmarks represent the most significant challenge for few-shot TL
autotuning, with search spaces that are orders of magnitudes larger than those present in the Poly-
bench kernels and complex interplay between many variables. We expect less speedup from autotun-
ing spaces for these applications for several reasons. First, the tuning spaces are orders of magnitude
larger than Polybench tuning spaces; we use the same number of source task evaluations for all ex-
periments, which means that TL operates on less complete information about each ECP tuning
problem. Second, for more advanced applications, it is more challenging to represent highly effective
tunable optimizations than the more straightforward Polybench kernels. Third, some speedup from
system-related tuning parameters can be hidden by other tuning parameters. The choice of core
affinity, for example, has a greater impact on performance if the configuration also includes many
threads. Finally, some parameter defaults, such as loop tiling values, are already highly effective,
which limits the improvement that can be extracted from the tuning space. Although we temper our
expected improvement from autotuning, these experiments represent more realistic tuning scenarios

where autotuning refines more complex and partially optimized code.
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Figure 5.5: The GC remains competitive with state-of-the-art techniques on complex ECP benchmarks.
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Even though our GC technique cannot leverage information gained through iterative eval-
uations, the technique meets or exceeds the original expert-optimized performance on over half of
the exascale tuning tasks. The AMG task is the most difficult for any technique to optimize, but
the GC outperforms GPTune either from its first evaluation or within its predicted budget for all
transfer tasks. Even as the relationship between parameters and performance becomes more complex
and search spaces grow orders of magnitude larger, the GC can identify high-performing traits in
prior data and produce high-quality candidates in the few-shot tuning scenario. Across all exascale
benchmarks, the GC produces configurations within a performance margin of 2% of those discovered
by GPTune at worst. Notably, GPTune’s best evaluations for two XSBench tuning tasks are better
than ours, but the superior evaluations are collected during its random sampling for the new task,
as shown in Figure 5.5a. This may indicate that the prior tuning data does not adequately inform
autotuning techniques of characteristics of the optimum for this benchmark.

We also note that the GC retains the black-box characteristics enjoyed by prior methods
such as BO. Unlike other benchmarks in this work, SW4Lite is a GPU-enabled benchmark, and the
tuned kernel is executed on GPU hardware. As shown in Figure 5.5b, the GC evaluates higher-
performing configurations than exploratory techniques such as GPTune do. The proposed tuning
budget is also reliable across multiple seeds, such that the GC reliably makes its best evaluation
within the budgeted number of evaluations. If much larger budgets are allowed, the GC has less
chance of improving than other TL autotuning techniques have. In such cases, or if any possible
performance gain is desired, our technique may be best utilized to perform initial exploration of new

spaces within a limited few-shot budget to bootstrap iterative techniques.

5.6 Extension to Multi-Scale Tuning

Our success in tuning for fixed hardware configurations at different scales shows the promise
of the GC as an autotuner. However, most HPC programs scale hardware and software together,
which vastly complicates the performance relationship. To this end, we design an additional exper-
iment to evaluate the GC’s suitability for this mode of multiscale tuning.

Given the complexity and ambiguity of the single-node scale ECP mini-application results,
we seek a different application that can be expected to provide clearer insights to the capabilities

of compared autotuners. For this purpose, we select the Highly Efficient Fast Fourier Transform for
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Table 5.7: Hardware details for the ALCF Polaris system.

Type Details
CPU | AMD EPYC Milan 7543P 32-cores at 2.8 GHz
40 GB HMB2 Memory
GPU NVIDIA A100 9.7 TFLOP/s peak FP64 and 19.5 TFLOP/s peak FP32

Exascale (heFFTe) [62].

To support multi-scale evaluations more effectively, we integrate GCTLA into YTOPT’s
LibEnsemble library [63], which allows for parallel evaluations across resources. As a result, portions
of the source code for these experiments are contained in a branch of the LibEnsemble library located

at https://github.com/tlranda/ytopt-libensemble/tree/multiscale.

5.6.1 Evaluation System

We utilize a different system to support larger-scale tuning for this benchmark: Polaris.
Polaris is a cluster at Argonne National Laboratory’s Leadership Computing Facility (ALCF). The
hardware details are provided in Table 5.7. The supercomputer is organized with two nodes per
chassis, seven chassis per rack and a total of 40 racks. GPUs within the same chassis are connected
by 600 GB/s NVLink, other connections are made over 64 GB/s PCle with a pair of Slingshot 11

network adapaters.

5.6.2 Benchmark Application and Tasks

The heFFTe software package includes a benchmark application, speed3d r2c, that bench-
marks a GPU-aware MPI implementation of the Fast Fourier Transform algorithm commonly utilized
in scientific applications. The speed3d r2c application organizes a 3D FFT computation between
nodes and devices, but utilizes a backend library with 1D FFT support to execute the majority of
the work. For the GPU architectures, the 1D FFTs are handled by the cuFFT backend [64].

We represent each task in the space by the number of compute nodes and each dimension
of the FFT input volume and perform weak data scaling between the problem size and number of
compute nodes. The full set of tasks are detailed in Table 5.8. Because the input problem is defined
as a 3D FFT, we double the size of one dimension of the FFT for each doubling of the number of
nodes involved in the computation. We alternate the axes that are doubled in round-robin order (ie:

Z-axis, then Y-axis, then X-axis) to ensure tasks remain relatively consistent in terms of the data
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Table 5.8: Tuning tasks are weakly scaled across FFT sizes and compute devices. The observed variability
in performance is presented in GFLOP /s based on empirically observed values. The GCTLA budget estimate
per-task is also provided.

FFT Dimensions | Worst Known | Best Known
7+ Nodes | Total GPUs | 7 MPT Ranks X Y Z Performance | Performance
2 8 8 256 | 256 | 256 53.7 1,308
4 16 16 256 | 256 | 512 86.0 2,233
8 32 32 256 | 512 | 512 160.5 4,170
16 64 64 512 | 512 | 512 174.6 8,664
32 128 128 512 | 512 | 1024 146.9 12,018

management requirement and constraints. We assign one MPI rank per GPU (four per compute
node) and double the number of nodes to weakly scale the computational resources. As the single-
node performance can fully rely on the NVLINK interconnect between devices with much higher
bandwidth, its performance would be a sharp outlier compared to multi-node decompositions that
must communicate some data over PCle. We use no fewer than two nodes so that this complex
change in behavior does not need to be modeled by the transfer learning techniques. We are not
aware if jobs are physically scheduled to the same rack or chassis, especially at lower ranks, but make
efforts to have our jobs scheduled within the same chassis or rack wherever possible. Because of the
system’s hardware configuration, the 16- and 32- node problems are guaranteed to scale beyond a
single rack regardless of job placement on nodes.

We utilize the benchmark’s reported throughput (in GFLOP/s) as the metric of merit to be
optimized. As shown in Table 5.8, the range between the best and worst performing configurations
grows faster than the floor performance. This underscores the importance of transfer tuning for HPC,
as tuning on smaller subsets of the cluster can be done at larger scale to rapidly identify performance
behaviors at much cheaper cost than the largest-scale evaluations of interest. If effective, transfer
learning can provide massive leverage while reducing the overall resource cost associated with the

tuning process.

5.6.3 Tuning Space Definition

The tuning space for heFFTe is expressed by a selection of runtime flags.
Precision. While precision is not often a tunable component, we permit autotuners to
freely select between single- and double- precision.

Reordering. This flag can be enabled or disabled; enabling it will reorder all data to be
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contiguous before calling the backend library. The heFFTe authors default to not reordering for the
cuFFT backend.

MPI Communication Strategy. This option determines the kind of MPI collective
communications to utilize amongst All-to-All, All-to-All-v (vector), Peer-to-Peer, and Peer-to-Peer-
Pipelined.

Reshaping. This option determines the shape of intermediate steps of the computation
to be either pencils (1D) or slabs (2D). Slabs are supposed to offer higher performance when fewer
MPI ranks participate in the problem, while pencils should dominate performance at high numbers
of MPI ranks.

Conversion Direction. The FFT can be performed as a complex-to-complex (general
FFT), real-to-complex (forward FFT), or complex-to-real (inverse FFT). These represent different
flavors of problems FFTs solve, but since we are focused on maximizing overall throughput the
autotuner must determine if the average performance is improved or not by any particular FFT.

Virtual MPI Topologies. The virtual topology for MPI communications does not neces-
sarily layer one-to-one over physical hardware topology, but organizes computations between com-
puting elements. There are two virtual MPI topologies to separately define the in-grid and out-grid
specifications. Fach topology is defined in three dimensions which map to a decomposition of the 3D
FFT’s volume, changing the message sizes and volumes between various ranks. The virtual topology
has the greatest impact on performance as it affects network latency and bandwidth, but has the
least guidance from the heFFTe authors for effective tuning. The number of unique virtual MPI
topologies are task-dependent, ranging from 10 to 36 within our experiments. We exclude topol-
ogy selections that do not utilize all available compute units (under-specified) as well as topology
arrangements that are transpositions of previously-defined topologies (functionally identical) as the
virtual-to-physical mapping cannot guarantee consistent differences in behavior for re-arranged axes.

Overall Tuning Space. Excluding the two parameters defining virtual MPI topologies,
this tuning space has a size of 96 elements. For the smallest task with two nodes (10 virtual
topologies), the total search space includes 9,600 configurations. For the largest task with 32 compute

nodes (36 virtual topologies), the total search space includes 124,416 configurations.
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5.6.4 Multi-Scale Results

We find that GCTLA and GPTune are largely incapable of performing transfer-tuning for
weak-scaling across hardware and software. However, there is reason to believe that GPTune will
improve with additional target task data while GCTLA is less likely to significantly change with
additional target task evaluations.

Target: 4 node heFFTe Target: 16 node heFFTe
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Figure 5.6: Left: GCTLA’s best performance is quite underwhelming in the transferred task domain.
Right: GPTune is also out-performed by Bayesian Optimization from scratch on most datasets.

Figure 5.6 shows how our GCTLA technique fails to generalize performance from source to
target tasks. The average sampled configuration is worse than GPTune’s initial random exploration
and the efforts of Bayesian Optimization from scratch. While GPTune performs better than GCTLA
on this problem, it is also out-performed by restarting Bayesian Optimization from scratch. This
suggests that the transfer relationship is too complex to be learned from smaller-scale source data.

Even for sophisticated techniques such as GPTune the optimization efforts are most productive when

exploring the new task.

GCTLA Peak BO Trials GPTune Peak BO Trials
Target Task Relative to to Exceed Relative to to Exceed
BO Peak Best GCTLA BO Peak Best GPTune
2 Nodes 39.7% 1 94.4% 32
4 Nodes 54.2% 5 60.1% 5
8 Nodes 38.6% 1 66.0% 14
16 Nodes 34.6% 5 60.0% 13
32 Nodes 86.6% 59 145.3% N/A

Table 5.9: Optimal performance of transfer learning searches as a percentage of the highest performance
identified by Bayesian Optimization from scratch, as well as the number of Bayesian Optimization evaluations
needed to outperform the transfer learing search’s best result.
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Table 5.9 shows the relative advantage of Bayesian Optimization over each transfer learning
technique across all target tasks. GPTune is able to outperform GCTLA on all tasks as the transfer
learning relationship is not well-formulated, but Bayesian Optimization further outperforms GP-
Tune on all but one task. Typically, Bayesian Optimization is able to exceed the performance
of the transfer learning search within the number of alloted evaluations for each transfer learing
search. This strongly demonstrates that the knowledge between tasks is harmful to the searches and
validates that GPTune’s continuous learning capability allows it to gradually recover as its search
progresses. GCTLA has no such mechanism and is unsuitable for autotuning when the transfer

learning relationship must be learned within the target task.

5.6.4.1 Cross-Task Replication
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Figure 5.7: When comparing against the extended dataset, it is obvious that the transfer learning tech-
niques have failed to identify high-quality mappings between source and target tasks.

To further explain the discrepancies between these results and our prior experiments, we
replicate observed configurations on a closest-match effort between all tasks. We cannot directly map
the virtual MPI topology of each observed configuration to all other tasks because the topologies are
dependent upon the total number of MPI ranks. Instead, we preserve all other configuration values

and convert the the MPI topology to the new task’s topology space based on its rank-normalized
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log, scale in the original task. This conversion process allows us to closely match topology features
between scales by preserving the relative difference between axes while still utilizing all ranks as
required for use in the new task.

The resulting dataset allows us to inspect changes in the performance relationship between
tasks without relying on an evaluation of the entire search space. As shown in Figure 5.7, even in
tasks where it appears that transfer learning techniques have provided high levels of utility to the
search, a broader perspective reveals these results to be at best half of the optimum value. While
GPTune strongly outperformed Bayesian Optimization, the extended evaluation set shows us that

other configurations in the search space deliver 1.64X more throughput than the GPTune optimum.

5.6.4.2 Transferability Analyses

Our expanded dataset allows us to try and understand what limitations prevented transfer
learning from performing as desired. We observe that the relative importance of each parameter
value for high throughput computations are stable across different scales. This means that the
transfer learning techniques remain capable of identifying the most important parameters and these
assumptions are not misleading. Rather, the behavior within these highly important parameters
must change between tasks for the transfer relationship to be under-constrained.

Lower impact parameters include precision, reordering, conversion direction, and reshaping
(in least-to-greatest order). These parameters have nonzero impact on the final throughput, but are
frequently dominated by other parameter selections and only need to tuned once a local optimum is
identified. Both GCTLA and GPTune consistently make reasonable selections for these parameters,
supporting these techniques’ capability to identify transferrable components from source task data.

The high-impact parameters in least-to-greatest order are the MPI communication strategy,
the in-grid topology and the out-grid topology. Unlike our previous transfer learning benchmarks,
the relationship between these three parameters are highly complex — a near-optimal value for one
parameter in absentia of near-optimal values for other parameters will result in poor performance.
In other words, these separate parameters require joint-tuning of highly complex nature.

This requirement for joint tuning of parameters with a highly complex relationship far
outpaces the capabilities of GCTLA’s covariance modeling, which can only represent pairwise cor-
relations between variables. If the highest-performing configurations happened to be near-identical,

the GC may be able to model such behaviors, but this is not the case for heFFTe’s optimization and
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the model is too underfit to properly represent the behaviors observed in training data. GPTune also
fails to model this degree of complexity with the minimal dataset, but shows some signs of breaking
through to partially model the in- and out-grid parameters to some effect. With additional train-
ing data and a longer tuning budget for the target tasks, it is likely that GPTune will successfully
identify the high-performing regions of each new task, but we do not experimentally validate this

expectation.

5.6.5 Lessons Learned

The primary challenge for effective multi-scale tuning of this benchmark lies in effectively
determining the in-grid and out-grid topology shapes. The complexity of these inter-dependent
variables proves to be too difficult for the Gaussian Copula to model. While some autotuning
budgets were indeterminate in our input-scaling experiments, the Gaussian Copula proved capable
of providing a surprising amount of utility. However, this represents a case where an indeterminate
autotuning budget is a good indication that the GCTLA is not well-suited for use in the problem.
We also manually check the covariance matrix and determine that the fitted Gaussian Copula finds
near-zero correlation between the topology parameters. Several other variable pairs have similar
near-zero correlations as they are truly decoupled variables, but observing this behavior for variables
with known interdependency may serve as an additional warning that the Gaussian Copula model

is incapable of representing the complexity of behaviors in the training data.

5.7 Related Work

Prior TL autotuning has enabled data reuse on related tasks for increased sampling effi-
ciency and reduced modeling overhead. BLISS [50] attributes significant cost to tuning multiple
models for large-scale applications but also demonstrates that it is difficult to generalize between
small datasets and the full range of potential performance. Other work [65] employs cost models
to substitute cheaper sources of information and utilizes TL to generalize information as needed.
However, in situations with a limited budget, the cost model is less relevant to the target problem
and requires model reconstruction. Projecting an optimum via machine learning techniques such as
GPTune [66, 15] enables more budget optimization for few-shot transfer, but these models require

blind evaluations in each new task to form the basis for the transfer relationship. Other works such
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as Active Harmony, ANGEL, and ParEGO [54, 55, 56] focus on multiobjective efficiency by refining
a surrogate Pareto frontier. These algorithms provide stronger long-term convergence guarantees
rather than few-shot performance. Our work permits immediate access to the most efficient samples
through conditional sampling, allowing for aggressive few-shot tuning.

Prior works have also used biased sample distribution and importance sampling to increase
autotuning capabilities. Marathe et al. [67] found that the correlation between different input
scales and available parallelism improves performance predictions. Their work, however, intends to
optimize for common-case average outputs and cannot drive the search aggressively. GEIST [6§]
transforms the problem of bias and variance in parameter spaces into undirected graphs and reframes
the optimization problem into predicting labels for high or low performance. The autotuning frame-
work Tuneful [57] utilizes incremental sensitivity analysis in BO and explicitly utilizes importance
to identify performance trends. Chen et al. [58] use random forest importance measures in massive
search spaces by limiting the number of simultaneously tuned parameters to permit full-space ex-
ploration. Our biased generative GC reinforces and benefits from increased likelihood to sample the
most important parameters of a search space.

Copulas have been reported in the literature as part of an autotuning process. Salinas et
al. [69] used the GC process to bootstrap expected improvement from a small number of initial
samples in a BO framework based on ranked quantiles. More recently, Zhang et al. [70] utilized the
correlation identified by a GC to explore the multiobjective Pareto frontier. Both studies used the
GC to aid the BO process in TL. Salinas et al. [69] used GCs to build an expected improvement
autotuning model with minimal initial random samples or prior data and iteratively refit the model as
information became available. The effectiveness of copulas in these techniques is limited to variable
correlations in relatively low degrees.

Our work uses the traditional GC with some modifications from the SDV [59] implemen-
tation. While our experiments do not yield evidence that special care in dependence modeling is
necessary, we note that different copulas or GCs are available [71]. Users can select between vari-
ations better suited for tail distributions for which Pearson correlation is insufficient to describe

covariant behaviors jointly.
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5.8 Conclusions

In this chapter, we propose the GC as the first generative TL-based autotuning technique.
Our technique aggressively searches for best-performing configurations in few-shot settings using
quantile filtering and conditional sampling to bias distributions learned by the GC model. We pro-
vide the first TL-based autotuning technique that includes a budget-identifying measure to predict
the expectation of few-shot performance. We then evaluate our technique on various real-world
benchmark applications, demonstrating remarkable effectiveness in few-shot TL settings where con-
tinued explorations of benchmark characteristics performed by other methods are wasteful resource
expenditures.

We also report the limitations of our technique and others for simultaneous tuning across
hardware and software scales. Our experiments and post-hoc analyses indicate that these problems
underscore yet-to-be-solved challenges for transfer learning autotuning. In particular, we identify
tight parameter dependencies with highly complex interactions that not only exceed the simple
modeling capabilites of the Gaussian Copula, but also challenge iterative learning techniques such
as GPTune and Bayesian Optimization.

Many additional avenues remain open to future research with this generative TL-based
autotuning framework. We believe the GCTLA may be usable in multiobjective tuning problems. It
may also be possible to replace the covariance matrix with higher-order modeling that still permits
usage of the probability integral transform for conditional sampling, increasing the utility of GCTLA

on highly-complex tuning problems.
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Chapter 6

Conclusion

This work emphasizes the importance of specific and holistic perspectives on computing
performance. We demonstrate these perspectives in the forms of hardware-granted opportunities,
software-driven leverage of hardware and integration-based optimization across both fronts, espe-
cially within the field of High Performance Computing.

Specifically, we explore hardware-granted opportunities in the form of SPLIC hardware de-
velopments. This technology promises greater energy efficiency in cooling systems while theoretically
supporting higher computing density and software performance relative to familiar air-cooled envi-
ronments. For software-driven leverage of hardware, we optimize the performance of Word2Vec based
on core principles of GPU hardware implementation and strengths, permitting both retroactive and
proactive performance boosts between architectures without need for specialized code modifications
for individual hardware iterations. Finally, we present a novel integration technique in the Gaussian
Copula for Transfer-Learning based Autotuning. This technique opens the door for Generative Au-
totuning, an entirely new approach to optimization that leverages knowledge of both hardware and
software at their integration points on systems. Below, we provide additional discussion of these

findings and contributions in addition to opportunities for future work.

6.1 Discussion of Key Findings and Contributions

Impacts of Immersion Cooling on HPC Applications Our case study of the Submer Smart-

pod v3 SPLIC immersion tank provides empirical insights into actual hardware and application
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behaviors in relation to cooling demands and activities in small-scale clusters.

We demonstrate that the liquid coolant shares more heat between hardware components
than air-cooled systems, possibly leading to hotter operating conditions for certain components
than are typical. This is primarily driven by the thermal capacity of the SPLIC fluid volume and
limited heat exchange. We do not observe adverse performance impacts due to insufficient cooling
for any applications, spanning memory and compute bottlenecks for CPUs and GPUs alike. This
suggests some minimal risk under normal operating conditions despite the general heat accumulation
within the system. However, we also observe that the high-energy hardware components can reach
critical operating temperatures without heating enough of the fluid volume to trigger a response
from the tank controller, which could damage equipment such as GPUs over prolonged periods
of intense usage. Mitigating this possibility requires more adaptable controls and direct integration
between hardware temperature sensors and coolant control systems, but can be somewhat controlled
by under-estimating the coolant temperature’s set point at the cost of some energy efficiency gains
that could otherwise be exploited. Finally, we observe small defects in current technology’s operation
and amenability to use with commodity hardware. The software and firmware defects will likely be
addressed over time, but other aspects such as the plasticizer included in coolant may continually

necessitate specialized care and alternative hardware purchases catered for usage in SPLIC systems.

Lasting GPU Acceleration: A Case Study in Word2Vec Optimization Novel hardware
can provide many new opportunities, but if software is not positioned to leverage these opportunities
then these developments will under-serve actual use cases. We demonstrate this effect through
previous iterations of the Word2Vec algorithm on GPUs, which were outperformed by CPUs despite
massive performance improvements for GPU accelerators relative to CPU architectures.

Our FULL-W2V implementation of the Word2Vec algorithm for GPUs relies on keen insights
into the continued developments and opportunities provided by GPUs coupled with deeper knowledge
of the algorithm itself to permit continuously scaling performance. We are the first to explicitly
recognize and leverage the independence of negative samples to permit register-level caching for
GPUs and increase the algorithm’s arithmetic intensity on GPUs from 11.2 to 24.9. Additionally, we
identify memory latency on GPUs as the primary bottleneck of performance and introduce lifetime
reuse of context words to reduce overall memory demand of the algorithm by 91%. Together, these

optimizations lead to 5.44X speedup over CPU implementations and 8.65X speedup over prior GPU
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implementations. We further demonstrate how our approach scales across generations of hardware,
with automatic 2.97X speedup between NVIDIA P100 and V100 GPUs. All of these improvements
are made with trivial cost to the quality of results despite several semantically significant alterations

to the algorithm.

Efficient and Transferable Multi-Scale Performance Autotuning When software is well-
designed to leverage opportunities provided by hardware, there are a myriad number of configurations
that must be tuned to achieve maximum performance. This tuning can be extremely costly, especially
when data is not reused between highly related tuning efforts. To meet this need, we proposed a
novel automatic tuning technique called Gaussian Copula for Transfer-Learning Autotuning, which is
specifically designed to meet common performance tuning requirements found in HPC optimization.

Our technique relies on correlating similarities between high-performing configurations dis-
covered by prior tuning efforts, leveraging this prior knowledge to rapidly identify high-performing
configurations for new, related tuning problems. Furthermore, as a generative autotuning technique,
we demonstrate the novel and largely reliable capability to predict the success of tuning under given
conditions before making a single evaluation in the new domain. The input-scaling experiments
demonstrate how this technique exceeds the capability of prior autotuners in 80% of all tasks, yield-
ing as much as 12.81X additional speedup on Polbench benchmarks. For the remaining 20% of
tasks, our technique remains competitive with prior art by suffering no more than 5.5% performance
degradation compared to the best-known performance. We then demonstrate the limitations of our
technique in multi-scale autotuning, where hardware and software are jointly tuned. Indeed, this
problem remains challengeing at a fundamental level and requires additional research to propose
novel solutions. Fortunately, our model is able to indicate its difficulty optimizing these problems

prior to beginning tuning efforts, an affordance that other autotuners cannot provide.

6.2 Recommendations for Further Research

Each chapter of this manuscript presents opportunities for additional novel research.

Impacts of Immersion Cooling on HPC Applications Our experiments within a single
SPLIC environment can be studied in a variety of other environments where additional questions

can be answered. In particular, several companies provide forced induction compartments for SPLIC
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with localized pumps to increase the coolant flow rate around critical hot spots. This may address
the system’s ability to respond to high-demand components more appropriately while also providing
the means to more directly monitor local thermal conditions, especially for the high-heat components
like GPUs as we identified in Chapter 3.

Our experiments are also limited in scope to the local demands and effects within a single
chassis or cooling tank. For instance, we were not able to fully account for all water and air flow
in either system. Expanding the scope to account for more external measurements of air, water,
and power usage involved in components such as evaporators and Computer Room Air Conditioning
would present a far more complete understanding of current energy efficiency than the estimations
provided in this work. Performing these analyses during experiments that scale to all available
resources (such as in benchmarks like the Top500 and Green500) present additional opportunities
to gain insight over the entire system’s demands when servicing full-scale workloads.

Based on our observations of possible divergence between hardware temperatures and
coolant temperatures, there appears to be ample opportunity for improvements to the firmware
monitoring and control of this particular SPLIC product. Efficiently predicting and managing
responses will require additional research in real-time thermal modeling and integration between
sensors. These models could exist within a similar framework as the monitoring tools built in our
work, but are most useful when fully integrated into the coolant firmware for automatic control.
Better predictions of thermal activity will also permit better responses from the coolant system,
which will necessarily rely upon improvements in predictive energy modeling and job scheduling.

Finally, we believe our work forms a foundation for benchmarking the cooling capabilities
and application demands of a fixed hardware-software benchmark. This could be further developed
into benchmarks for cooling power efficiency, thermal dissipation capability and responsiveness, all

of which will remain key distinguishing capabilities of SPLIC technology for the foreseeable future.

Lasting GPU Acceleration: A Case Study in Word2Vec Optimization While Word2Vec
has received less attention in the wake of LLMs and transformer architectures, further improvements
to our GPU implementation such as multi-GPU and multi-node scaling are possible. Additionally,
we expect many latency-bound GPU applications can benefit from algorithm-specific modifications
similar to our register and shared memory utilization that pivot away from common matrix-operation

style computation towards vector-operation computation that the hardware may more efficiently
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process.
Our work highlights the fundamental importance of maintaining locality between operations,
which has widely been embraced by the machine learning community via various frameworks with
advanced kernel fusion techniques. Other scientific applications that primarily rely on BLAS libraries
continue to suffer from a lack of kernel fusion techniques, presenting opportunities for compilers and
other frameworks in scientific computing to improve GPU locality between such operations.
Finally, we believe additional improvements to our implementation of Word2Vec remain
feasible, given interest in the subject. Other research has already indicated a number of relaxations
similar to those used in our work, such as shared negative sampling and our fixed context window
width. We believe that properly determining the algorithmic extent of permissible reuse will reveal
greater opportunities to improve the GPU-side control flow, permitting GPU performance to scale
closer to the roofline potential of the architecture. Improved understandings of the algorithm’s
convergence properties may also pave the way for additional parallel scaling, especially in multi-

node and multi-GPU implementations.

Efficient and Transferable Multi-Scale Performance Autotuning We believe that there is
ample reason to look forward to other generative or non-regressive transfer learning approaches for
performance autotuning to further explore the regime of data-constrained few-shot transfer learning.
Non-regressive autotuning techniques are highly suited for the data constraints imposed by many
applications of interest. Other probability models may be better suited to modeling complex be-
haviors such as those we observed while weak-scaling heFFTe and can provide even more precision
when predicting outcomes and greater explainability of generated results.

We also note the obvious failure of transfer-learning techniques on the weakly scaled FFT
problem as a clear indicator of an under-served challenge within the autotuning space. Multi-scale
tuning appears to present complex interdependencies between variables that frustrates current mod-
eling and representative techniques. Improving the mathematical understanding of these behaviors
to suggest the necessary amount of information for proper modeling and better ways to measure and
predict the most-informative configurations that contribute to that information will be invaluable
to the continued growth and practice of autotuning within HPC.

There are also possible improvements to the Gaussian Copula in the form of supporting

model paradigms, where the Gaussian Copula’s low-cost generative technique can be supported
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by a less capable regressive model that can sort and refine the set of generated candidates prior
to evaluation. This permits the supporting model an opportunity to simplify its approach to only
discriminate within a higher-quality region of the search space. It also provides the Gaussian Copula
means to continue generating for longer-term searches without degrading towards the expectation

of pure random sampling.
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