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Abstract—The growing need for energy-efficient computing has
led to many novel system innovations, including liquid immersion
cooling. While many myths about the technology have been
dispelled, the actual impact of this cooling solution on thermal
conditions in real computing scenarios remains under-reported
and under-studied. In this work, we collate data from multiple
system monitoring tools to perform case-study analyses of the
thermal behaviors of immersed hardware, aiming to evaluate the
effectiveness of liquid immersion cooling for high-performance
and datacenter applications.

Index Terms—Immersion Cooling, Datacenter Computing, Ap-
plication Study

I. INTRODUCTION

In efforts to improve cooling efficiency, reduce costs, en-
hance Power Usage Effectiveness (PUE), and ensure hardware
reliability, many large-scale computer systems are transitioning
from air-cooling solutions to liquid-cooling solutions. Single
Phase Liquid Immersion Cooling (SPLIC) is such a technology
in which computing hardware is completely submerged in a
container filled with a dielectric fluid (coolant). Compared
to air, the coolant medium is denser, has higher thermal
conductivity and higher heat capacity. These properties rel-
atively improve heat dissipation and permit more efficient
heat recycling. Many benefits of SPLIC are well-understood
in theory, but the practical effects of the technology on real
software workloads have not been well studied academically.

Software has various compute and memory access inten-
sities, stressing processing units and memory systems dif-
ferently. These hardware components have different power
properties and ranges. For example, processing units con-
sume more power and have a larger power range compared
to memory devices and disk drives. Component power is
also determined by the underlying hardware technologies;
for instance, CPUs are generally less power efficient than
GPUs, and DDR memory devices are less power efficient
than high-bandwidth memory (HBM) devices for the same
capacity. Consequently, software induces varying levels of
heat dissipation, resulting in different thermal effects within
the system. This variation is evident in the spatial temperature
map of the system, highlighting areas of high-temperature
concentration known as hotspots.
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SPLIC has a different cooling mechanism, control, and
operation compared to air cooling. SPLIC dissipates heat
in liquid coolant by connecting chilled water tubes passing
through the coolant tank. To actively exchange heat, the
liquid coolant circulates periodically using pumps or when
the coolant temperature exceeds a certain threshold. Unlike
air cooling, which directly monitors computer hardware com-
ponents and responds to their temperatures, SPLIC monitors
the temperatures of the coolant entering the pump and the
heated chilled water exiting the tank. This separate approach
to thermal monitoring inherently delays the system’s response
to heat accumulation within the hardware. Therefore, under-
standing the actual impacts of this cooling technology on
different hardware and software workloads is important for
evaluating its utility and design implications beyond mere
hardware configuration.

In this work, we conduct a case study on thermal behaviors
in a SPLIC tank with a immersed compute cluster. We
utilize several CPU-based and GPU-based High Performance
Computing (HPC) and datacenter applications with different
compute and memory intensities and analyze hardware thermal
behavior and their variations with the SPLIC system con-
figurations and operations. Unlike prior works that rely on
simulations, our case study provides empirical insights on
thermal demands induced by applications and their effects
within the immersed environment.

II. BACKGROUND & RELATED WORK

One of the major ways to iteratively improve performance
through hardware is to increase the device density. However,
denser circuitry increases the power density of the components
and reduces cooling effectiveness for components such as
those deeper within 3D dies, resulting in greater thermal
accumulation within the hardware [6]. At the extreme scale,
high heat can damage computing hardware and render it
inoperable [3]. To prevent such damage, thermal sensors in
critical hotspots automatically trigger a decrease in the clock
rate of devices to limit additional energy before the device
becomes temporarily or permanently inoperable. To ensure
performance and throughput, HPC and datacenter systems that
push thermal limits require sophisticated cooling solutions.
These solutions permit maximal usage for the longest possible
period without detrimentally lowering clock rates or causing
device failures.



Despite continued innovation in air-cooling technology, air
is simply not dense enough to maintain pace dissipating heat
from modern HPC and datacenter systems, let alone future
designs that are predicted to only increase in Thermal Design
Power (TDP). With nearly half of all datacenter energy devoted
to cooling hardware and datacenters accounting for 2% of U.S.
energy consumption [2]], liquid-based cooling technologies are
promising and necessary for continued growth and innovation
in computing. There are several different approaches to liquid-
based cooling, including Direct Liquid Cooling (DLC) and
Single- and Dual- Phase Liquid Immersion Cooling (SPLIC
and DPLIC, respectively). We limit the focus of our discussion
to SPLIC in this work.

A. SPLIC Technology

SPLIC systems include a container with pumps for forced
coolant circulation and tubes that can be connected to chilled
water sources for heat exchange. Circulation is induced to
reach temperature equilibrium of the entire fluid volume
more quickly and to facilitate more effective heat exchange.
In comparison to Direct Liquid Cooling (DLC), immersion
cooling affects all computing components rather than just the
areas covered by cold plates where liquid is always flowing.
SPLIC systems are more energy-efficient because the pumps
only activate periodically to circulate fluid if the coolant
temperature exceeds a set point.

B. Prior Evaluations of SPLIC

Many design decisions impact the performance of SPLIC,
including the number of pumps, the pump arrangements and
settings within the tank, and the choice of dielectric fluid,
which have all been studied by many works [3], [4], [9],
primarily via simulation or isolated experiments on individual
components. Existing work has addressed several initial con-
cerns about the technology, including the extent of dangers
to hardware components from absorbing dielectric fluids [S§]]
and the capital burden of procuring, installing and maintaining
SPLIC rather than other more traditional cooling systems [/7].
However, the existing literature largely lacks evaluations of
SPLIC hardware in meeting actual application cooling de-
mands, which we aim to address in this work.

III. RESEARCH QUESTIONS

We investigate specific questions with real application per-
formance in an SPLIC environment to provide a more com-
prehensive perspective on the larger subject.

A. RQI: What are the thermal behaviors of individual hard-
ware components in SPLIC?

Heat accumulates in the pod as power is drawn and used
by individual computing components, and generally increases
with the hardware’s utilization. Most commodity hardware is
technically compatible with SPLIC, but have thermal designs
that do not explicitly consider properties of ambient liquid
coolant. For instance, processors and accelerators typically
comprises physical parts such as memory caches and process-
ing cores accommodating both memory access and compute.

Such integration improves performance but has a high thermal
conductivity and heat exchange within components. SPLIC
coolant, if not actively circulated all the time, is unable to
reach thermal equilibrium or transfer heat as fast as fan cooling
between components in close physical proximity.

It is important to understand if high core temperatures
dissipate more heat to proximal components such as mem-
ory, particularly for GPUs. Furthermore, the environment’s
tendency for equilibrium may result in certain hardware com-
ponents operating at higher temperatures than would be typical
given their power design, necessitating cooling interventions
for components that may not have DVFES or thermal throttling
capabilities.

We observe the actual thermal operating range and rate
of temperature change for key hardware components before,
during, and after prolonged execution of various applications.
These characteristics can be compared relative to the range of
temperatures and rate of temperature change in the pod coolant
to determine an appropriate response and tolerance within the
environment. We also observe the rate of change in hardware
hotspot temperatures and coolant temperature to determine if
the indirect thermal measurement performed by the cooling
system can appropriately respond to high demand from the
computing components. We present per-component analyses
and coolant-relative per-component analyses in Section

B. RQ2: How do initial conditions affect SPLIC performance
and efficiency?

Some cooling techniques such as DLC yield higher heat
dissipation rate as the coolant temperature rises, which is
a very convenient upside. We aim to determine whether
similar benefits can be observed in SPLIC by correlating
heat dissipation with the initial temperature during cooling
periods, ensuring that workloads do not interfere with the
measurements. We also correlate various component activity
measures with temperature dissipation during cooling cycles
when applications are running, to determine if different work-
loads exhibit distinct thermal patterns beyond the rate of heat
introduction into the environment. We analyze these trends in

Section [V=BIl

C. RQ3: How do different workloads affect heat accumula-
tion?

Exhaustive studies of application behavior are impractical.
In this work, we use a selection of workloads to represent
HPC and datacenter applications with similar primary resource
demands and study the resulting thermal challenges for the
cooling system.

In particular, we consider applications where the primary
device used for computation is CPU or GPU and if the
computation is subject to a bottleneck in compute or memory
throughput. Due to the small number of servers, we exclude
network throughput as a bottleneck in our study, though we
recognize its importance for large-scale distributed system
and workloads. We present a correlative analysis between



workload classification and induced cooling demand in Sec-

tion V-C]

IV. EXPERIMENT DESIGN

We answer the research questions by conducting a set of
experiments and analyses. Our experimental platform consists
of an SPLIC environment with immersed servers, a suite
of applications with various thermal footprints, and tools to
monitor sensors and performance.

A. SPLIC and Server Hardware

SPLIC Environment: Our SPLIC environment is visualized
in Figure E} We use a Submer SmartPod v3, which utilizes
a proprietary synthetic dielectric fluid to cool all computing
hardware within the tank’s volume. The pod uses two redun-
dant pumps to circulate coolant. The pod exchanges heat with
facility-chilled water, which flows through tubes at the bottom.
The temperature of the in-flow chilled water is measured at
10 to 12 degrees Celsius.

We are limited to only a few servers available for immer-
sion, which cannot generate enough heat in a short period
for our studies if the pod is always connected to the chilled
water. To address this limitation, we conduct thermal analyses
while the chilled water is disconnected and continue after
reconnecting chilled water to observe the system’s capability to
respond to strong cooling demand. This approach allows us to
study the SPLIC system’s response to high-heat environments
without excessively stressing the system for prolonged periods.
We maintain high levels of compute activity for an extended
duration and then re-engage the chilled water, permitting the
system to return to its normal state.
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Fig. 1. SPLIC tank arrangement used in our experiments.

Server Hardware: We immerse three server nodes into the
pod. The nodes are composed of commodity hardware and
colloquially referred to as “deepgreen,” “n01,” and “n02”, as
detailed in Table [} The deepgreen node is the head node while
n01 and n02 are compute nodes.

Hardware Preparation: The SPLIC coolant fluid includes
plasticizer, so we replace thermal paste between hardware
components and heat sinks with indium foil. The plasticizer
also makes ethernet and power cables rigid and somewhat
brittle after a few months. However, these cables remain at
negligible risk of breaking while undisturbed.

We remove or disable all moving hardware on power
supplies, motherboards, GPUs and CPUs. Server components
physically moving in an air-cooling environment are unsuitable

TABLE I
IMMERSED SERVER HARDWARE
Nodes Kind Hardware Specs
Mother- S8021GM2NR-2T Five (5) PCle 3.0
board x16 slots
CPU AMD EPYC 7551P 2.00 GHz
Deepgreen 3 :
32 cores
GPU Two (2) NVIDIA 5120 cores
Titan V 12 GB HBM2
Mother- X9DRG-QF Four (4) PCle 3.0
001, n02 board x16 slots
’ CPU Intel(R) Xeon(R) 2.30 GHz
CPU E5-2670 v3 64 cores

for immersion cooling. Take fans, for example; they would
generate enormous heat from friction with the dense syn-
thetic fluid, triggering alarms and risking bumindﬂ Specialized
hardware “immersion ready” or designed to improve SPLIC
performance circumvents these issues. In this work, we are
limited to commodity servers, which generalize across various
possible server configurations.

B. Applications

We utilize a selection of HPC applications with different
compute intensities, as shown in Table @

TABLE II
SELECTED APPLICATIONS AND CLASSIFICATIONS
Application GPU Throughput
Name Accelerated Bottleneck

CUDA Stream v Memory
EMOGI v Memory
CUDA DGEMM v Compute
MD5 Bruteforcer v Compute
NPB DT Class=C X Memory
NPB IS Class=D X Memory
NPB EP Class=E X Compute
HPCC HPL X Compute

GPU Applications: We select CUDA Stream as a GPU-
enabled memory bandwidth test with minimal computation.
For a more realistic representation of memory-intensive GPU-
accelerated HPC applications, we utilize a specially con-
structed graph using the EMOGI graph tool [5].

We also include compute-intensive GPU applications, in-
cluding CUDA DGEMM which are widely used by many
scientific and machine learning workloads. We also provide
the MD5 Bruteforcing algorithm as an example of datacenter
workloads. This applications’ repeated hashes permit long
arithmetic sequences without dependence upon large-scale
Memory accesses.

CPU Applications: We utilize several key kernels from the
NAS Parallel Benchmark Suite [1], including Data Traffic,
Integer Sort and Embarassingly Parallel. Each of these bench-
marks are executed at the largest class size that can be executed
while utilizing the entire server system.

'We indeed experienced this once.



C. Metrics and Monitoring Tools

We utilize multiple publicly available software tools to
collect metrics on CPU, GPU and NVMe device thermal
sensors and activity measures, as well as a vendor-provided
API to monitor the SPLIC system. To minimize the impact of
monitoring on application performance, our tool is designed
to sample each metric at a target rate of 1Hz and caches some
information to reduce the overhead of sample collection. Our
software harness is publicly available via GitHu

CPU Monitoring: We record per-core frequencies from
the cpufreq/scaling_cur_freq files in the Linux
/sys/devices/system/cpu/cpux/ directories. These
frequencies are recorded by the CPU governor in these files
as integer-valued KHz.

We also use the libsensors library provided by Im-sensors
(version 3.6.0) to monitor CPU core temperatures. The tem-
perature values are reported as floating-point degrees Celsius
with a single point of precision.

GPU Monitoring: We record GPU metrics listed in Table ITI]
using the NVML library based on NVIDIA driver version
535.54.03 and NVML version 12020, corresponding to CUDA
version 12.2. Each metric is represented using integer values,
so temperature data are reported less precisely for GPUs than
equivalent measurements for CPU temperatures.

TABLE III
NVIDIA GPU METRICS RECORDED USING NVML

Metric
GPU Temperature
Memory Temperature
Power Usage
Power Limit
GPU Utilization
Memory Utilization
Memory Used
Performance State

Meaning (Units)

Average SM temperature (°C)
Memory junction temperature (°C)
Power draw (mW)

Maximum power draw (mW)
NVIDIA metric of SM activity (%)
NVIDIA metric of memory activity (%)
Allocated global memory (bytes)
NVIDIA metric of device state (integer 0-8)

NVMe Monitoring: We record NVMe temperatures using
libnvme version 1.6, which are also reported as integer degrees
Celsius.

PDU Monitoring: We record single-precision PDU phase
amperage to determine the complete system’s power draw over
an SNMP interface. The Rack PDUs are Schneider Electric
model AP7811B, with a 30 Amp limit and 208 Volt output
of single-phase AC current, so the conversion to kiloWatts is
straightforward.

Pod Monitoring: We use the provided API endpoint to
collect metrics listed in Table [[V]using LibCurl version 7.68.0.
The API reports temperatures at single-precision and most
other values as integers.

D. Experimental Procedure

We conduct independent tests utilizing a single application
as the workload for the server for the entire observed duration.
Each test begins with thirty minutes of idling activity while

Zhttps://github.com/tlranda/LibSensorsTools

TABLE IV
POD METRICS RECORDED FROM API
Metric Meaning (Units)
Temperature Average coolant temperature (°C)
Consumption Pod power consumption (W)
Dissipation Thermal dissipation (both as °C and KW)
mPUE Power Usage Effectiveness (scalar)
Pump RPM Pump rotations per minute (scalar)
Coolant Temperatures Input/output coolant temperature (°C)
Water Temperatures Input/output chilled water temperature (°C)
Flow Rates Flow rate of coolant and water (L/minute)

disconnected from chilled water to establish a baseline for ex-
perimental conditions. After this initial period, we repeatedly
execute the workload application for 7.5 hours, after which we
reconnect the chilled water supply to the pod. We continue
to monitor temperatures for an additional 24 hours as the
pod dissipates accumulated heat and returns to its equilibrium
state.

V. RESULTS

We report our results based upon the research questions
posed in Section

A. Thermal Behaviors of Individual Hardware Components
(RQI)

Importance. The range of measured temperatures of each
hardware component determines the risk of violating thermal
tolerances and how quickly temperatures may be expected to
change. We also seek to identify variations in temperature
based upon the application demand to determine if thermal
behavior is purely driven by energy expenditure or if more
complicated behaviors emerge.

Metrics. We begin by analyzing the minimum temperature
as a small range of values collected during the idle baseline
prior to each application test. As initial conditions are similar
across all experiments, we aggregate all data during these pe-
riods to establish the minimum, mean and maximum observed
temperatures of each component.

We then consider the recorded temperatures across each ex-
periment’s active application periods to determine the greatest
attained temperature over the baseline and the greatest linear
rate of temperature increase throughout all experiments. We
compare the dissipated coolant heat relative to hardware activ-
ity measures to determine if more complex modeling is needed
than pure power demand. The hardware activity measures and
collection techniques are defined in Section

Results. Each of the above metrics are computed for all
monitored hardware and presented in Table [V] All hard-
ware components except the NVMe are capable of changing
temperatures faster than the pod coolant, however only the
GPU hardware was observed to reach levels where thermal
throttling could become a reasonable concern when executing
the DGEMM application, where it reached a maximum tem-
perature of 96 °C. The Titan V GPU models are designed for
a maximum operating temperature of 91 °C, with thresholds
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for slowdown and shutdown at 97 and 100 °C, respectively.
Had the experiment continued, the disconnected chilled water
would not permit adequate heat exchange for the SPLIC
system to protect immersed hardware and could have damaged
the GPU. Notably, GPU temperatures fell to 46 °C almost
immediately upon terminating the DGEMM application for
this experiment, and a repeated execution of the benchmark
without interrupted access to chilled water failed to exceed
a GPU temperature of 80 °C. With the re-introduction of
chilled water for heat exchange, the SPLIC system was able
to return all temperatures to normal idling levels over the next
9 hours. Figures [2] and [3] show detailed temperatures of this
experiment in without chilled water and with uninterrupted
access to chilled water.

TABLE V
THERMAL BEHAVIORS BY HARDWARE COMPONENT

Hardware Idle Temp. Interval (s) Op. Temp.
Component Min/Mean to Increase Observed
/Max (°C) Temp by 1°C Max (°C)
SPLIC 19.80 / 21.41 970.99 47.10
Coolant /22.50
deepgreen 14.75 7 17.51 702.20 55.62
CPU /19.66
deepgreen 24.25 7 26.54 266.83 96.00
GPU / 28.00
deepgreen 14.00 / 17.91 1068.48 44.00
NVMe /20.00
n01 17.44 7 21.30 607.33 66.00
CPU /24.04
n02 17.67 / 20.81 560.35 69.00
CPU / 24.26
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Fig. 2. Thermal Behavior of DGEMM Without Chilled Water. DGEMM runs
on GPU 1.

B. Effects of Initial Conditions (RQ2)

Importance. SPLIC’s energy efficiency may correlate with
fluid temperature, making a trade-off between maximum ther-
mal tolerance and long-term energy expenditure.

Metrics. We monitor the dissipated heat during periods
where pumps are active and chilled water is available for the
SPLIC heat exchange.

Results. We present the aggregated data across all ob-
servations in Figure ] It’s clear that the maximum heat
removed positively correlates with a higher initial temperature,
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Fig. 3. Thermal Behavior of DGEMM With Chilled Water. DGEMM runs
on GPU 1.

however the minimum heat removed during a cycle remains
roughly constant regardless of initial temperature. Because the
pump activity duration, chilled water temperature and pump
power draw are held invariant in our experiments, this implies
that SPLIC can yield increased energy efficiency at higher
temperatures, however the behavior is not guaranteed to be
observed.
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Fig. 4. Temperature at start of idle pump cycle vs amount of heat removed.

C. Effects of Workloads on Heat Accumulation (RQ3)

Importance. Given that almost all hardware components
can heat up faster than the average coolant temperature, it’s
important to know what workloads will likely produce the
greatest heat accumulation within the pod. This simplifies
benchmarking a system’s cooling demands and ensures system
responses can be properly calibrated for extended application
executions.

Metrics. We use the average interval to increase the tem-
perature by one degree Celsius when the temperature delta
reaches the maximum during application execution. To sim-
plify comparisons, we group applications based upon CPU- or
GPU-centric classifications and application throughput being
Compute- or Memory-bound as previously denoted in Table [[I}

Results. We display the interval of each experiment ap-
plication in Figure 5] The lower values indicate faster heat
accumulation. These applications present a good range of
heat accumulation rates. In contrast to common impression
that GPU applications accumulate heat faster, only compute-
intensive GPU applications do, while memory-bound GPU



applications yield relatively slow temperature changes. In
general, compute-bound applications accumulate heat faster
than memory bound applications, no matter whether they are
programmed to run on CPU or GPU.
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Fig. 5. Time intervals required by applications to accumulate heat. The
smaller the interval, the faster the application execution increases coolant
temperature by 1 °Celsius.

VI. CONCLUSIONS

Our experiments reveal a few initial insights about the
current state of SPLIC immersion technology.

Strong resilience to thermal changes. Current tank designs
use temperature readings at coolant pumps, instead of relying
on embedded sensors in hotspots and computer components,
to respond to thermal changes. This is a fixed strategy. As
evidenced by our experiments, the technology can handle
fluctuations in computing demand for extended durations.
However, the same physical properties that enhance its energy
efficiency also significantly extend the time required to return
to a neutral state.

Delayed responses to temperature differentials. Our study
shows that hot spots within hardware components have signifi-
cant lag time before pod sensors can detect changes in temper-
ature, meaning that responses must be calibrated to be more
aggressive in inducing a cooling response in case hardware
conditions outpace the system’s detection. Future iterations
of the hardware that can directly read computer components’
sensors can respond in a more appropriate fashion without
expending extra energy.

Ease of operation and maintenance. Modifying com-
modity hardware for initial server setup is intrusive but can
be circumvented by utilizing specialty hardware designed for
SPLIC. Non-specialized hardware can be limited by server
layout, such as connectors that cannot bend sharply to reach
ports and certain components that are inaccessible for mainte-
nance without completely removing server blades due to the
pod rack’s vertical orientation. After removing hardware from
the pod for maintenance, liquid residue can create slipping
hazards and must be carefully monitored and cleaned. Finally,
adding or removing components in the pod changes the level
of coolant, which may require adding or removing coolant to
maintain an appropriate volume for the container.

Reliability. Throughout our extended immersion of hard-
ware, we have not observed degradation in peak performance.

Plastic components affected by the plasticizer are eventually
damaged and may require replacement during or after main-
tenance.

After our experiments, our datacenter had a power outage
that we believe caused damage to a coolant pump sensor. This
left the pod in a malfunctioning state that caused the coolant
pumps to fail, leading us to terminate future experiments
until a replacement could be sourced and installed. This
level of operation disruption was not easily addressed by our
technicians without vendor involvement, which complicates
service and maintenance.
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