FULL-W2V: Fully Exploiting Data Reuse for Word2Vec on GPU-Accelerated Systems

Thomas Randall, Tyler Allen, Rong Ge {tlranda, tnallen, rge}@clemson.edu

Techniques

ICS '21, Virtual Event; June 17, 2021

Funded in part by NSF Grants: CCF-1551511 and CNS-1551262

- 3-layer ANN
 - Words $w \rightarrow d$ -dimensional embeddings e
- Prior ports based on data-intensive implementation
 - Suboptimal usage of GPU memory hierarchy

Introduction Problem Techniques Conclusions Results

- 3-layer ANN
 - Words $w \rightarrow d$ -dimensional embeddings e
- Prior ports based on data-intensive implementation
 - Suboptimal usage of GPU memory hierarchy

- 3-layer ANN
 - Words $w \rightarrow d$ -dimensional embeddings e
- Prior ports based on data-intensive implementation
 - Suboptimal usage of GPU memory hierarchy

- 3-layer ANN
 - Words $w \rightarrow d$ -dimensional embeddings e
- Prior ports based on data-intensive implementation
 - Suboptimal usage of GPU memory hierarchy
- FULL-W2V reduces access and improves locality
 - Leverage memory hierarchy based on algorithm's access pattern

• Challenge: Negatives are random and have lower reuse

- Challenge: Negatives are random and have lower reuse
- Opportunity: Operations have independent order

- Challenge: Negatives are random and have lower reuse
- Opportunity: Operations have independent order

- Challenge: Negatives are random and have lower reuse
- Opportunity: Operations have independent order
- Solution: Use registers for maximum reusability
 - Minimize up-front memory latency, maintain locality
 - Improved pipeline utilization
 - Maintain scheduling flexibility, reduce stress for Shared Memory

- Challenge: Negatives are random and have lower reuse
- Opportunity: Operations have independent order
- Solution: Use registers for maximum reusability
 - Minimize up-front memory latency, maintain locality
 - Improved pipeline utilization
 - Maintain scheduling flexibility, reduce stress for Shared Memory

Different Pattern: Context Words have more reuse

• Different Pattern: Context Words have more reuse

- Different Pattern: Context Words have more reuse
- Allocation: Shared Memory leverages longer-term reuse
 - High performance; Explicit control; Flexible scheduling
- Management: Ring buffer

- Different Pattern: Context Words have more reuse
- Allocation: Shared Memory leverages longer-term reuse
 - High performance; Explicit control; Flexible scheduling
- Management: Ring buffer

Introduction Problem Techniques Results Conclusions

13

- Different Pattern: Context Words have more reuse
- Allocation: Shared Memory leverages longer-term reuse
 - High performance; Explicit control; Flexible scheduling
- Management: Ring buffer

Buffer:

Context windows	include	adjacent	words
-----------------	---------	----------	-------

- Different Pattern: Context Words have more reuse
- Allocation: Shared Memory leverages longer-term reuse
 - High performance; Explicit control; Flexible scheduling
- Management: Ring buffer

Introduction Problem Techniques Results Conclusions

15

- Different Pattern: Context Words have more reuse
- Allocation: Shared Memory leverages longer-term reuse
 - High performance; Explicit control; Flexible scheduling
- Management: Ring buffer

- Different Pattern: Context Words have more reuse
- Allocation: Shared Memory leverages longer-term reuse
 - High performance; Explicit control; Flexible scheduling
- Management: Ring buffer

Demand in GB/Epoch

Results

Implementation	L1/TEX	L2	DRAM	%
Closest Prior	1,134.448	493.614	226.578	100.0%
Register-W2V	885.065	781.576	66.555	78.02%
FULL-W2V	94.760	88.723	41.851	8.35%

- FULL-W2V: Register-W2V + Context Word Reuse
 - 4.35X total speedup previous best on V100
 - 3.85X speedup from Register-W2V only
 - Sum data demand reduced by 91.65%

18

Insights and Conclusion

- We present FULL-W2V
 - 4.35X prior SOTA on V100
 - 2.99X scaling from P100 to V100
- Different storage for different data
 - Register-W2V: maximize short term reuse in register
 - FULL-W2V: maximize long term reuse in shared memory
- Looking for more?
 - Our code is open source: https://github.com/tlranda/FULL-W2V
 - See the extended presentation for additional details

Acknowledgements

- Thomas Randall
 - <u>tlranda@clemson.edu</u>
 - tlranda.people.clemson.edu
 - https://www.researchgate.net/profile/Thomas-Randall-5
- Tyler Allen
 - tnallen@clemson.edu
 - tnallen.people.clemson.edu
 - https://www.researchgate.net/profile/Tyler-Allen-2
- Rong Ge
 - rge@clemson.edu
 - people.cs.clemson.edu/~rge/
- Support from NSF Grants CCF-1551511 and CNS-1551262
- Clemson University is acknowledged for generous allotment of compute time on Palmetto cluster