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ABSTRACT
Word2Vec remains one of the highly-impactful innovations

in the field of Natural Language Processing (NLP) that rep-

resents latent grammatical and syntactical information in

human text with dense vectors in a low dimension.Word2Vec

has high computational cost due to the algorithm’s inher-

ent sequentiality, intensive memory accesses, and the large

vocabularies it represents. While prior studies have investi-

gated technologies to explore parallelism and improve mem-

ory system performance, they struggle to effectively gain

throughput on powerful GPUs.

We identify memory data access and latency as the pri-

mary bottleneck in prior works on GPUs, which prevents

highly optimized kernels from attaining the architecture’s

peak performance.We present a novel algorithm, FULL-W2V,

which maximally exploits the opportunities for data reuse

in the W2V algorithm and leverages GPU architecture and

resources to reduce access to low memory levels and im-

prove temporal locality. FULL-W2V is capable of reducing

accesses to GPU global memory significantly, e.g., by more

than 89%, compared to prior state-of-the-art GPU implemen-

tations, resulting in significant performance improvement

that scales across successive hardware generations. Our pro-

totype implementation achieves 2.97X speedup when ported

from Nvidia Pascal P100 to Volta V100 cards, and outper-

forms the state-of-the-art by 5.72X on V100 cards with the

same embedding quality. In-depth analysis indicates that the

reduction of memory accesses through register and shared

memory caching and high-throughput shared memory re-

duction leads to a significantly improved arithmetic intensity.
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FULL-W2V can potentially benefit many applications in NLP

and other domains.

1 INTRODUCTION
Word embeddings, which represent the meaning of words

as numerical vectors, enable computers to understand hu-

man language and build efficient complex learning and infer-

ences [5]. Word2Vec is a distributed word embedding gen-

erator that uses an artificial neural network to learn dense

vector representations of words [13]. The geometry of result-

ing vectors captures the syntactic and semantic similarities

of words, and also exposes complex word and conceptual

relationships through vector operations. For example, the

words ‘Rome’ and ‘London’ cluster relatively near to one

another in the space, and the distance between them is simi-

lar in direction and magnitude to the distance between the

words ‘Italy’ and ‘UK’. Word embeddings such as Word2Vec

are essential to solving many natural language processing

(NLP) problems [4, 8, 20, 23], including language translation,

image captioning, medical software, recommendation sys-

tems, various document analysis and have been conceptually

expanded to other domains such as graph theory [6, 18].

New embeddings are continually needed to capture the

latest domain knowledge that can be extracted from ever-

growing and ever-evolving corpora and graphs. However

useful these word embeddings may be, it is expensive to

train new Word2Vec embeddings. First, the Word2Vec algo-

rithm [13] sequentially trains small moving context windows

from the corpus with minimal data parallelism, repeating

the process until convergence. Second, the computational

complexity scales with both the embedding size and number

of unique words to be embedded, the vocabulary, which are

ever-increasing for many applications. Third, the state-of-

the-art algorithms involve intensive memory accesses and

have low arithmetic intensity, limiting hardware scalabil-

ity. Over time, the demands for high training throughputs

continue to increase. While multiple techniques have been

proposed to explore parallelism on GPUs [1, 7, 15, 21] and

to reduce memory accesses by improving data reuse [9, 15,

19], these works have failed to adequately utilize current-

generation GPU hardware and are unlikely to scale to future

hardware architectures due to the aforementioned issues.
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Figure 1: Roofline benchmarks for state-of-the-art kernels
on a V100 GPU. The solid blue line is the roofline bound-
ary, the dotted blue line marks the inflection point be-
tweenmemory-bound (left) and compute-bound (right). Pre-
vious work is memory-bound and exhibits poor overall
throughput despite being data-intensive; our work FULL-
W2V presents a significant improvement.

The state-of-the-art [1, 7, 15, 21] GPU implementations

of Word2Vec — Wombat and accSGNS — struggle to effec-

tively utilize the architecture as shown in Figure 1. While

it is well known that data-intensive workloads struggle to

achieve high arithmetic throughput, GPU implementations

of Word2Vec have thus far not approached the peak of its po-

tential performance on this architecture. Our work — FULL-

W2V — represents a significant improvements in overall

performance and a significant climb in effective arithmetic

throughput. These results confirm the challenges in man-

aging latency for Word2Vec on GPUs for data-intensive

workloads like Word2Vec as well as the necessity of highly-

targeted optimizations.

We devise novel technologies to significantly improve

Word2Vec performance on GPU architectures. Our key idea

is to fully exploit reuse opportunities for different types of

words during training, and explicitly cache them in registers

or shared memory based on their request size and duration.

Word2Vec has a high degree of reuse opportunities that are

particularly suited to the storage technologies on GPU if the

algorithm is expressed correctly to take advantage of them.

For example, high numbers of available and flexible registers,

and explicitly allocable sharedmemorywith the same latency

as low-level caches. We take advantage of these technologies

to cache reused data fully for the extent of its lifetime, use

techniques such as ring buffers to limit the overhead and

management cost of such techniques, and balance heavy

storage use to ensure scheduling units are still saturated and

latency is fully hidden.

In this work, we present FULL-W2V, a fine-grain paral-

lelism, highly scalable Word2Vec GPU algorithm with opti-

mized data reuse. First and foremost, this algorithm main-

tains the required semantic ordering of context windows,

maintaining prior guarantees of convergence. Second, it ex-

ploits three levels of work partition including batches, sen-

tences, and embedding to create high degrees of parallelism

on GPUs. Third, compared to previous work, our algorithm

fully exploits data reuse opportunities, resulting in increased

throughput and greater performance scalability, nearly elim-

inating per-thread memory stalls. Lastly, our algorithm co-

ordinates CPUs and GPUs to seamlessly provision data and

launch concurrent kernels to saturate GPUs with work.

We have implemented the algorithm and evaluated the pro-

totype onmultiple generations of GPUs. Experimental results

show that our algorithm produces embeddings with the simi-

lar quality as existing works. It automatically achieves 2.966X

speedup when moving from Nvidia Pascal 100 and Volta 100

cards. In comparison to the state-of-the-art CPU and GPU al-

gorithms, it outperforms state-of-the-art multithreaded CPU

implementations by 5.44X, and modern GPU implementa-

tions accSGNS and Wombat by 5.724X and 8.647X respec-

tively. Deep analysis shows that our algorithm increases

the arithmetic intensity by 23.90 and 16.46 over accSGNS

and Wombat respectively by improving register locality and

utilizing advanced caching techniques to control data reuse.

We make the following contributions in this work:

• Wepresent FULL-W2V, a fine-grain parallelized, highly

scalable Word2Vec GPU algorithm, which overcomes

the challenges of latency hiding inherent in data in-

tensive Word2Vec training. It achieves 8.647X speedup

over the state-of-the-art on Nvidia V100 GPUs.

• FULL-W2V is the first Word2Vec implementation to

exploit independence of negative samples to enable op-

portunities to cache and reuse negative samples in reg-

isters for Word2Vec training. It improves arithmetic

intensity and instruction level parallelism by interleav-

ing memory demand and computation.

• Realizing that memory access is still a performance

bottleneck, FULL-W2V exploits lifetime reuse of context
words to significantly reduce average memory access

latency and optimize data sharing, reuse, locality, and

coalescing.

2 BACKGROUND AND RELATEDWORK
2.1 Problem Formulation and Algorithm
Word2Vec is a three-layer artificial neural network that learns

to represent all words in a vocabularyV asd-dimensional vec-

tors v ∈ Rd based on their usage in a set of sentences. These

vectors are known as word embeddings. Well-constructed

word embeddings can reveal meaningful expressions of syn-

tactic and semantic relationships between words. For in-

stance, distance(vcat ,vdoд) < distance(vcat ,vhammer ) indi-

cates that the word “cat” is more similar in meaning to “dog”
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Figure 2: An example context window (bordered blocks) of
sizeW = 2 centered on target words in gray. Most words are
reused between successive context windows, providing pre-
dictable reuse opportunities.

than “hammer,” and various verb tenses of the same word

appear clustered in Rd to indicate similar syntactic uses.

The Continuous Skip-GramwithNegative Sampling (SGNS)

model architecture of Word2Vec has been utilized to great ef-

fects in the NLP field for transformers and other higher-level

language tasks [20]. The Word2Vec introduced by Mikolov

et al. [13] additionally provides a Continuous Bag-of-Words

(CBOW) model architecture for Word2Vec, but Rogers et

al. [20] found that the SGNS model architecture generally

produces higher quality embeddings for downstream applica-

tions of interest, so we focus our attention on the Continuous

SGNS model architecture.

The abstract overview of the Word2Vec algorithm is as

follows: the input to Word2Vec is typically a corpus of words

that are organized into “sentences”, and in each sentence

meaningful relationships exist between nearby words; the

vocabulary V is formed from all words in the corpus. In

training, the contents of individual sentences are consumed

from beginning to end using a sliding context window of 2W
words whereW is the window size, as shown in Figure 2.

The center word is the current target word that the model is

being trained against. The training algorithm assumes that

each word in the context window has increased similarity

to the target word as it is positively related. Such similar-

ity is reflected in the vector representations. The algorithm

also assumes that words not present in the context window

are not related, and their similarity to the target word de-

creases. Rather than decreasing the similarity of all words

not included in the context window, SGNS randomly sam-

ples a small number N words using a weighted distribution

and makes them more dissimilar to the target word, hence

the name “Continuous Skip-Gram with Negative Sampling”.
These “negatives” greatly reduce the data intensiveness of

training as N << |V |. Like other neural network models,

SGNS yields a converging solution for word embedding val-

ues with a sufficient number of iterations over the data set.

The context window sizeW and number N of negatives

perword are typically defined as hyperparameters inWord2Vec

models. Mikolov et al [12, 13] established thatW ∈ [2, 10]
and N ∈ [2, 20] are often sufficient for most datasets, accel-

erating training speed without reducing embedding quality,

and smaller values of N are more appropriate for larger

datasets.

2.2 Related Work
All Word2Vec implementations historically stem from foun-

dational work by Mikolov et al [12, 13], which expresses

high level data parallelism between sentences of the corpus

for improved performance. According to Hogwild! SGD [16],

as long as large models are trained with batches with suffi-

ciently varying contents, parallel gradient descent training

can be performed in a lock-free environment without syn-

chronization. This condition is generally true for Word2Vec

with distinct sentences from a given corpus, so data paral-

lelism amongst sentences is commonly exploited using CPU

threads or GPU thread blocks.

There have been many implementations of Word2Vec

since the seminal works, including implementations for the

Tensorflow [22] and Gensim [24] machine learning frame-

works. The algorithm has been ported to many architectures,

including the cloud-based BlazingText [7], cluster imple-

mentation BIDMach [2], and FPGA architectures [17]. We

focus the rest of our discussion on published Word2Vec im-

plementations that push the boundaries of the algorithm’s

throughput on single-node CPU and GPU architectures.

2.2.1 State-of-the-Art CPU-based Implementations.
pWord2Vec. Ji et al [9] reducememory intensity ofWord2Vec

by “sharing” the first N negative samples with all other con-

text words in each window. For data-intense networks such

as Word2Vec, reusing many vectors in each context win-

dow’s update greatly improves arithmetic intensity, which

is further exaggerated by allowing high-performance BLAS

libraries to perform the matrix arithmetic. While the authors

were able to show that the semantic changes to theWord2Vec

algorithm did not affect embedding quality, the matrix sizes

are relatively small and the implementation’s performance

still fails to approach peak CPU throughput.

pSGNScc Rengasamy et al [19] utilize advanced batching

techniques to combine multiple context windows into larger

matrix batches. The technique allows CPU architectures to

achieve much greater throughputs, but computation still

takes place entirely on the CPU architecture and is otherwise

equivalent in performance to pWord2Vec.

2.2.2 State-of-the-Art GPU-based Implementations.
accSGNS Bae and Yi [1] utilize a fine-grain parallel im-

plementation of Mikolov et al’s original Word2Vec to bring

the algorithm to GPU architectures. Their parallel hierarchy

maps GPU threads directly to embedding layers while thread
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blocks and grids exploit data parallelism between sentences.

The work’s vector parallelism allows for some scalability on

newer architectures, but is largely memory latency bound

as little is done to affect the data-intensive nature of the

Word2Vec algorithm, leading to workload imbalance and

poor performance scaling on newer architectures.

Wombat Simonton [21] focuses on Shared Memory opti-

mizations for Word2Vec, leveraging the architecture’s caches

to exploit reuse within context windows. The implementa-

tion’s parallel formulation uses relatively small thread blocks

to operate on fixed word pairings from a context window

while grids scale this parallelism across sentences. The tech-

niques provide state-of-the-art performance on older archi-

tectures, but scheduling limitations imposed by the parallel

decomposition hold back performance on newer architec-

tures, leaving large room for improvement.

PARW2V Moon et al [15] more recently provided CPU

and GPU implementations of Word2Vec that induce locality

by reordering operations inWord2Vec’s training updates and

allow for reuse of negative samples beyond a single context

window. The exact degree of negative sample reuse that can

be exploited prior to reducing the quality of embeddings

was not well understood, and the implementation mandates

strict hyperparameter values that limit generalizability. Fur-

thermore, we were unable to replicate the paper’s reported

results on our own systems, so this work is not discussed

further in this paper.

Our proposed Word2Vec implementation, FULL-W2V, is

most related to accSGNS as both works utilize the same par-

allel hierarchy. However, we improve upon these techniques

by developing a cache for context words that fully reuses

them throughout their lifetime in the sliding window with

minimal management, and utilize a local register cache and

modified workload breakdown to gain lifetime reuse of neg-

ative samples. All of these methods take advantage of data

reuse and problem decomposition in ways previously unseen

in Word2Vec.

2.3 Challenges on GPU
Addressing Memory Intensity and Latency. Like most

machine learning algorithms, Word2Vec trains on a large

amount of data, has inherently low computational inten-

sity, and is generally latency-bound. For CPU implementa-

tions, Word2Vec is parallelized coarsely along independent

sentences. The relatively low computational intensity and

throughput of existing GPU implementations have demon-

strated that a proper decomposition is difficult. To appropri-

ately take advantage of the massive number of cooperative

threads and memory hierarchies on the GPU, fine-grain par-

allelism within sentences must also be exploited, so as to ef-

fectively minimize high-cost memory accesses, hide latency,

and maximize the effectiveness of cooperative threads.

Managing GPUResource Tradeoffs.GPUs have funda-
mental tradeoffs when using different resources to improve

performance. Shared memory and register caches are both

high-speed options for caching data locally for high-locality

operations. These two resources are more reliable than im-

plicit caching, especially when (1) the required data for many

threads may exceed the available footprint in L1 or lower

level caches and (2) data with different levels of locality

are required for the same computation. However, these re-

sources also have limited capacity, and their overallocation

can restrict the total number of resident threads available for

execution, leading to reduced ability to hide latency. Elimi-

nating expensive memory operations by caching data and

hiding latency by using cache to support thread execution

both serve to improve performance, but it is difficult to pre-

dict which is more effective for a given problem. We must

tune the usage of these resources to the application’s data

locality and balance their usage to maximize performance.

Preserving Embedding Quality. When exploring new

avenues for parallelization and data caching, it is critical

that we avoid data dependency violations and minimize race

conditions. All parallel implementations of Word2Vec thus

far have had implicit race conditions between sentences con-

taining the same words, but the impact of this is minimal

and does greatly impact the rate at which the algorithm con-

verges under the principles described by Hogwild [16]. How-

ever, when introducing further parallelization at the sentence

level we risk introducing data dependency violations and

compromising the quality of the embeddings produced. Ad-

ditionally, changes to allocable memory and explicit caching

potentially introduce additional coherency issues that must

be managed. Careful algorithmic analysis and study of data

lifetime is required to preserve overall embedding quality.

3 METHODOLOGY
In this section we introduce FULL-W2V, a highly optimized

Word2Vec algorithm that is scalable on GPU accelerators. It

overcomes the limited data locality in the state-of-the-art

implementations and effectively exploits GPU architectures

in two key ways:

• it exploits independence of key arithmetic sequences

and decouples computations in fine granularity for

improved parallelism and reduced data dependency.

• it fully exploits the temporal locality and data reuse to

reduce access to lower levels of memory and average

memory access time.

4



FULL-W2V: Fully Exploiting Data Reuse for W2V on GPU-Accelerated SystemsICS ’21, June 14–17, 2021, Virtual Event, USA

3.1 The Independence of Negative Samples
We first introduce the negative sample independence property
of Word2Vec that allows us to make fine-grain parallelism

and highly-effective memory access optimizations. When

processing each context window in a sentence each context

word is paired against each negative, and the sum result all

pairings is applied as the model update. Because the sum is

commutative, each pairing may be computed independently

in any order. Acknowledging this independence offers us

two opportunities. First, each negative sample can be inde-

pendently paired with the context words without synchro-

nization, allowing fine-grain parallel processing among the

negative samples. Second, we can change the order of pro-

cessing such that all context words are processed for a fixed

negative, enabling temporal locality for each negative sample.

Recognizing the property of negative sample independence,

FULL-W2V flexibly manages the order that negatives are

processed within a single context window and cache them

to maximally reduce accesses to low memory levels.

Fine-Grain Parallelism and Temporally Distributed Data
Dependencies. Each individual negative is independently it-

erated over the context words in a context window, and the

N +1 negatives can be fully decoupled from one another. The

decoupling enables two types of opportunities: (1) fine-grain

parallelism and (2) reduced simultaneous data dependen-

cies. Fine-grain parallelism is crucial to latency hiding and

scalable performance on GPUs, and provides flexibility for

the scheduler to utilize available hardware resources. The

decoupling reduces the simultaneous data dependency to a

single negative sample instead of the whole collection, dis-

tributing the total number of accesses over the lifetime of

the computation. Thus it eliminates the need for a thread

block to simultaneously access and store all N + 1 negatives
locally for the duration of the entire context window. In-

stead, each thread block only accesses the corresponding

negative sample and stores its embedding vector directly for

its lifetime.

With only one dependent negative, FULL-W2V stores the

vector representation in a per-thread register cache. Using

registers instead of shared memory has two advantages. First,

register access incurs a much lower latency than shared

memory access and alleviates the demand for latency hiding.

Second, a negative sample does not have a large number of

reuses, which shared memory requires for best cases. Indis-

criminately and aggressively using shared memory reduces

the space for thread warps and leads to degraded parallelism,

performance, and limits the quantity that we can use for

better-suited optimizations.

Temporal Locality and Reuse. FULL-W2V stores each neg-

ative sample in a register and allows all the required embed-

ding updates in-register before writing it back to memory.

Each negative sample is reused by 2W times spanning a sin-

gle context window. In this way, we ensure our negative

reuse has minimal impact on the quality of the resultant em-

beddings. While prior works [2, 9, 15, 19] indicate that the

particular negative samples do not need to be independent

across context windows, Moon et al [15] show that excessive

reuse for negative samples has harmful impacts on the final

embedding quality. Nevertheless, the limitations are not well

understood by established literature. The reuse in a single

window has notable improvement for minimal embedding

quality cost [9], and greatly improves the access and storage

patterns of negatives for GPU architectures.

One complexity of progressing to the next context window

is incremental model updates. As the context window slides,

context words are reused several times and therefore the

corresponding model parameters have data dependencies

on prior updates, requiring strict sequential context window
ordering. In order to adhere to strict context window ordering
but take advantage of negative sample independence, FULL-
W2V uses each thread block to process a full sentence, with

individual windows processing all negative samples inde-

pendently before synchronously sliding the window. This

approach optimizes the targeted negative reuse without vio-

lating any data dependencies or risking over-reusing data.

3.2 Lifetime Reuse of Context Words
The second optimization enables maximum data reuse for

context words in the algorithmic characteristics ofWord2Vec.

As shown in Figure 2, we can determine the exact lifetime of

contextwords based on the algorithmic structure ofWord2Vec.

Almost every context word in a given window is also a con-

text word in the subsequent window. Since successive con-

text windows always shift the boundary and target word

over by one word, every word in the sentence will be a

target word once and can appear in up to 2W sequential

windows as a context word. In other words, a context word’s

lifetime can be up to 2W + 1 times of reuses. Despite this,

existing GPU algorithms fail to realize this degree of reuse

or adversely use excessive cache resource by relying on im-

plicit hardware management. Separated from existing work,

FULL-W2V fully exploits data reuse for the first time, and

at runtime explicitly caches and reuses context words with

minimum resources.

To reduce expensive high-latency global memory accesses,

FULL-W2V carefully utilizes GPU shared memory to cache

context words for their lifetime. A naive approach to reusing

across multiple windows is to match the size of all words

in a context window and allocate space for multiple win-

dows. This approach would require a prohibitive amount of

shared memory, so a more sophisticated and scalable solu-

tion is required. To solve this problem, FULL-W2V builds a
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circular ring buffer in shared memory to mimic the concep-

tual sliding window in Word2Vec. Each context word vector

can be stored in shared memory until the window passes it,

allowing the next word to overwrite it. Using this explicit

memory management, FULL-W2V avoids contention among

thread blocks over implicit caches to maximally reuse hot

data. The circular ring buffer also minimizes the amount of

shared memory required to store all necessary data for its

full lifetime, while minimizing management overhead.

In order to minimize complexity and maximize scalability,

FULL-W2V alters the implementation of the context width

hyperparameter. In traditional Word2Vec, the context width

randomly varies between 1 andW [10]. Complying with this

treatment of context width would require 2W × d space for

a context window, with a full d-length vector per word in

shared memory, or complex dynamic memory management

to handle the context ring buffer. To simplify implementa-

tion, FULL-W2V uses a fixed context widthWf = ⌈W
2
⌉, or

the average of the original random distribution. On average,

the fixed context width provides the same quality of result

while reducing (1) per-context width metadata, (2) the shared

memory allocation requirement by half, and (3) the overall

implementation complexity of the ring buffer.

With this implementation, FULL-W2V can cache all values

in context windows as soon as they appear and accumulate

updates in the shared memory until the word is no longer

eligible to be a context word. The overall benefit is a fur-

ther reduction of global memory accesses by

2Wf
2Wf +1

, approxi-

mately 86% forWf = 3, or equivalently a 91% reduction over

Wf = 5. In terms of the GPU architecture, this reduces the

overall latency and therefore requirement for latency hiding,

significantly improving on a key bottleneck.

3.3 Performance Implications
By combining fine-grain parallelism and data reuse enabled

by the aforementioned technologies, FULL-W2V has signifi-

cantly improved ability to hide memory access latency, and

is scalable with GPU architectures. Figure 3 summarizes the

resulting parallelism and effective data traffic involved in

one single context window in the average case, where this

current window is in the middle of sentence and share con-

text words with multiple precedent and subsequent windows.

FULL-W2V is distinct from the state-of-the-art Wombat in

two key measures.

• Full-lifetime explicit context and negative caching at

the shared memory and register level, respectively.

• Reduced traffic to each low memory level. FULL-W2V

reduces access to L1/shared memory cache by 50% and

access to L2 cache and GPU device memory by 42%, in

comparison to Wombat.

These differences have several performance implications

with GPU architectures and resources. Our method of fine-

grain work decomposition supports a high degree of par-

allelism, which is critical for memory intensive workloads

such as W2V to hide latency and improve instruction-level

parallelism.Meanwhile, the thread blocks andwarps in FULL-

W2V have far fewer accesses to low level memory and thus

memory stalls, improving overall computational efficiency.

Consequently, FULL-W2V is able to better utilize the com-

puting resource and achieve higher performance. Our exper-

imental results will provide detailed data to demonstrate the

gains.

FULL-W2V has scalable performance with generations of

GPU architectures. New and more powerful GPUs constantly

become available. They are typically equipped with more and

faster processing units or SMs, more scheduler units, larger

caches, and higher bandwidth. Given a newer architecture,

FULL-W2V can automatically scale up the degree of paral-

lelism to utilize the SMs and provide eligible ready warps

to be handled by more scheduler units. Equally importantly,

improved latency hiding, instruction-level parallelism, and

reduced overall memory cost cooperatively improve overall

performance and execution efficiency.

4 FULL-W2V DESIGN AND
IMPLEMENTATION

We implement a prototype of FULL-W2V for test and eval-

uation of our methodology. The prototype materializes the

methodology introduced in Section 3 as well as optimize the

CPU-GPU coordination.

4.1 CPU-GPU Coordination
There are two primary goals that require coordination be-

tween CPU and GPU devices. The first goal is to ensure that

the GPU remains occupied and utilizes its hardware to the

greatest possible extent as an accelerator. The second goal

is to allocate the workload between devices in such a way

that the CPU handles all batch-related precomputation and

indirected accesses that would hamper GPU performance if

it were instead performed within the kernel.

GPU Utilization. As with other GPU implementations,

FULL-W2V partitions the Word2Vec workload into a batch-
ing component on the CPU, and offloads the batches for

training on the GPU. In our implementation, batching is pre-

computation, random sampling, and assembly of data into a

format friendly for GPU, while training is the execution of

the Word2Vec algorithm. The heterogeneous coordination

is represented in Figure 4. Because (1) this is a synchronous

process, and (2) batches are relatively small relative to the

total computational capability of a GPU, we take advantage

6
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(a) FULL-W2V (b) Wombat (c) accSGNS

Figure 3: Parallelism and effective data traffic in the memory hierarchy involved in a single context window in the average
case. Accesses are shown as size x (iterations), where 2W represents the number of context words in a context window and N +1
represents N negative samples and the 1 target word. The colors correspond to how the traffic is related to Wombat (same =
yellow, reduced = green, increased = red).

Figure 4: The per-stream coordination in FULL-W2V. On
each stream, S = 10, 000 sentences (sent) are sampled from
the corpus and N = 5 negative samples (ns) are selected for
each context window in each sentence.

of NVIDIA Hyper-Q with CUDA Streams to allow many co-

operative CPU threads to batch simultaneously, launching

GPU kernels executing in parallel to saturate the GPU.

WorkloadPreprocessing onCPU. Similar toWombat [21],

the FULL-W2V batching process includes sentence and neg-

ative sample selection. Performing this work on the CPU re-

duces the number of indirect memory accesses in Word2Vec

that need to be performed on the GPU and entirely eliminates

GPU copies of several Word2Vec data structures, ultimately

improving memory access efficiency on the device. However,

unlike Wombat, FULL-W2V does not expand batches into

context windows or allow the GPU to reconstruct these win-

dows in the kernel. It provides indices as constant memory

to the kernel to avoid contention with model memory in the

Table 1: CPU batching speed in millions of words/sec with-
out memory transfers or kernels using the same evaluation
conditions as used for overall performance. Batching speed
can become a bottleneck for faster implementations ofW2V.

Implementation Text8 Batching Speed 1bw Batching Speed
FULL-W2V 210.340633 265.212834

Wombat 16.957496 16.653851

accSGNS 16.527374 15.263448

cache hierarchy, making reuse of the data appropriate on the

hardware.

Additionally, FULL-W2V adjusts the traditional Word2Vec

workload to facilitate more consistent and efficient GPU

utilization without impacting model quality. In addition to

fixed window width, it ignores sentence delimiters in train-

ing data, thus increasing the average size of sentences and

therefore the per-batch workload size. This treatment incurs

< 0.5% additional word pairings in common data set but is

still worthwhile without adverse performance impact due to

better resource utilization.

Finally, we note that achieved batching speed is now im-

portant for the effective execution of Word2Vec. Table 1

represents the rate at which GPU workloads are batched

in millions of words-per-second. Previously, GPU speeds

did not approach maximum batching speed. However, with

FULL-W2V, we now require the improved batching speed

demonstrated by our implementation.
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Figure 5: The multi-level workload decomposition and par-
allelism of FULL-W2V. Multiple sentences are batched for
each CUDA stream, which launch grids with one thread
block per sentence. Each thread block parallelizes embed-
ding layers to operate on pairs of words with many threads.

4.2 Parallelism Hierarchy
Maximizing the utilization of GPU architectures demands

massive concurrency, particularly for memory intensive ap-

plications like Word2Vec, to hide data access latency. FULL-

W2V uses a fine-grain, hierarchical parallel approach to meet

this demand, as shown in Figure 5. The hierarchy consists

of three levels of parallel Word2Vec training: multi-sentence

batch, a sentence and its current context, and a pair of words

or embedding vectors.

Batch: the training corpus is divided into batches and

multiple batches are simultaneously trained. This highest

level is realized through CPU multithreading and Nvidia

Hyper-Q CUDA streams as discussed in Section 4.1. FULL-

W2V creates one thread per physical CPU core, and each

iteratively manages batches and offloads the corresponding

training to the GPU via independent streams.

Sentence/context window: There are a number S of sen-
tences in each batch concurrently trained by a 1-d S GPU

block grid. We parameterize the number of sentences S per

kernel and use S = 10, 000 as an empirical baseline for perfor-

mance on our systems. Due to the strict sequential context

window ordering, a sentence can only have one current con-

text window, which slides over one word at a step. This

context window requires the embedding updates of its con-

text words and the negative samples. In our implementation,

we pair one sample with all the context words and calculate

the updates, and then iterate over the samples.

Word pairing: as each word is represented as a vector, a

word pairing involves vector operation, e.g., multiplication.

The vector computations are parallelized among d threads

in the same thread block. This level of parallelism enables

coalescing and broadcasting of memory accesses, as well as

cache availability. Because all threads within a block require

adjacent vector items, independent warps coalesce their ac-

cesses, while potentially making the same data available in

L1/L2 caches for other warps in collaborating thread blocks.

This hierarchical design can flexibly scale along multiple

dimensions to provide strong throughput guarantees under

a variety of problem settings and port to new architectures

without source code modification. Our prototype implemen-

tation is capable of utilizing word pairing level scaling to

accommodate larger embeddings without modification and

automatically gains speedup on architectures with more SMs

and warp schedulers.

5 EXPERIMENTAL RESULTS
In this section we provide our experimental results to quan-

tify FULL-W2V’s general performance characteristics and

success of our methodology at overcoming the challenges

detailed in Section 2.3.

5.1 Experimental Platform and Evaluation
Method

We evaluate FULL-W2V on three generations of Nvidia GPUs:

V100, Titan XP, and P100 with different processing and mem-

ory technologies in Table 2.

Table 2: Evaluation platforms

Hardware GPU Specs CPU Specs
GPU: V100

Gen-6 Volta

CPU: Xeon

Gold 6148

Gen-6 Skylake

80 SMs

14 TFLOP/s

16 GB HBM2

900 GB/s

4 Warp Sched.

2 20-core CPUs

2.40 GHz

27.5 MB L3

GPU: Titan XP

Gen-5 Pascal

CPU: Xeon

E5-2670 v3

Gen-4 Haswell

60 SMs

12.15 TFLOP/s

12 GBGDDR5x

548 GB/s

2 Warp Sched.

2 12-core CPUs

2.30 GHz

30 MB L3

GPU: P100

Gen-5 Pascal

CPU: Xeon

E5-2680 v4

Gen-5 Broadwell

56 SMs

9.3 TFLOP/s

12 GB HBM2

549 GB/s

2 Warp Sched.

2 14-core CPUs

2.40 GHz

35MB L3

Our analyses compare the following Word2Vec implemen-

tations:

• FULL-Register is a GPU algorithm that implements

the techniques described in Sections 3.1 and 4.

• FULL-W2V is an extension of FULL-Register that ad-

ditionally implements techniques described in Sec-

tion 3.2, and represents our full contribution.
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Table 3: Corpus Information. Both corpi only train onwords
with five or more occurrences in an epoch and are limited to
up to 1,000 words per sentence.

Corpus |Vocabulary| Words/Epoch Sentences
Text8 71,291 16,718,845 17,006

One Billion Words 555,514 804,269,957 30,607,795

• pWord2Vec [9] CPU algorithm is closely related to

FULL-W2V and is highly influential on the design of

many other Word2Vec works, providing a baseline

of expected embedding quality for Word2Vec under

Shared Negative Sampling.

• pSGNScc [19] CPU algorithm has the greatest multi-

core CPU throughput on our systems with a unique

batching mechanism to demonstrate state-of-the-art

throughput for Word2Vec on CPU architectures.

• accSGNS [1] GPU algorithm represents a somewhat

naive benchmark for CPU-styleWord2Vec implemented

on GPU hardware.

• Wombat [21] GPU algorithm provides a state-of-the-

art GPU performance for SGNS utilizing shared mem-

ory matrix multiplication and in-warp shuffle opera-

tions.

Corpora. Following existing literature, we evaluate the

quality of generated embeddings using the Text8 corpus [11]

as well as the One Billion Words corpus [3]. Table 3 presents

summary details regarding each corpus under our experi-

mental conditions. The Text8 corpus is commonly used for

benchmarking evaluations, while the latter includes much

more text, allowing it to more reliably predict downstream

task performance on a much larger vocabulary [20]. There-

fore we focus on Text8 for throughput analyses and One

Billion Words for quality analyses.

Evaluation Metrics. We evaluate the algorithms with

two types of metrics.

Training speed and performance.We report multiple mea-

sures of performance including the training throughput in

words per second, and various fine-grain GPU performance

data obtained from the nsight profiling tool.
Training quality. We utilize spearman’s rank coefficient

to compare the cosine similarity of word vectors to human

similarity judgements established in WS-353 [4] and SimLex-

999 [8]. We also use Hyperwords [10] to perform analogy

reconstruction with cosine addition and multiplication as

in the famous Kings-Queens example, and utilize Mikolov’s

original analogy set [13] as analogy prompts.

Evaluation Procedure. For overall throughput and all

embedding quality measures we report the mean and stan-

dard deviation of five identical executions to reduce the im-

pact of variance inherent to the Word2Vec algorithm. All

evaluations follow conventional Word2Vec hyperparameters

established in Mikolov et al. [13] with the following noted

exceptions. All experiments use the embedding size of 128,

which equalizes GPU performance between all implementa-

tions by ensuring each algorithm allocates fully predicated

on warps and benefits equally from aligned global mem-

ory offsets regardless of the thread block size used by any

given kernel–the fundamental performance of FULL-W2V

and other GPU algorithms are largely unaffected by this

choice. We allow each implementation to utilize one CPU

thread per logical core on the platform. We allow 20 epochs

of training on the Text8 corpus, which was empirically deter-

mined to be sufficient for convergence across all implemen-

tations; for similar reasons we train the One Billion Words

corpus for 5 epochs.

5.2 Overall Performance
We first evaluate the overall performance benefits created

by our algorithm. Figure 6 shows the training throughput

for each algorithm using the Text8 on each experimental

architecture. We make several important observations.

• FULL-Register on the XP architecture outperforms all

prior works on any architecture and has greater per-

formance scaling cross-architecture than prior works.

FULL-W2V on the P100 nearly doubles FULL-Register’s

XP performance, but scales its own performance be-

tween architectures to a similar degree as prior works.

• The margin of performance gain for FULL-W2V and

FULL-Register over prior works increases with succes-

sive hardware generations. FULL-W2V is 6.754X and

5.910X faster than accSGNS and Wombat respectively

on P100 and 5.724X and 8.647X faster than the coun-

terparts on V100. FULL-Register is 1.741X and 1.523X

faster than accSGNS andWombat respectively on P100

and 5.122X and 7.738X on the V100.

• Only the FULL-W2V and FULL-Register GPU algo-

rithms are capable of outperforming the peak perfor-

mance from state-of-the-art CPU algorithms. AccSGNS

on V100 cards achieves comparable performance to

the CPU-based algorithms, while Wombat has a lower

performance than the pSGNScc algorithm on all three

CPUs for the Text8 benchmark and only reaches CPU

performance on V100 with the 1bw benchmark.

5.3 Method Evaluation
5.3.1 Addressing Memory Intensity and Latency. We observe

that the register-exploited independence of negative sam-
ples in FULL-Register results in significant reductions in

DRAM demand compared to accSGNS, which has a similar

access pattern to FULL-Register, eliminating 70.6% of the

longest latencies in the memory hierarchy. The lack of regis-

ter caching and shared negative samples in accSGNS leads

9
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Figure 6: Throughput in words/second on Text8 corpus on various architectures. d = 128, N = 5,W = 5.

Figure 7: Throughput in words/second on One Billion Words corpus on various architectures. d = 128, N = 5,W = 5.

Table 4: Memory demand in gigabytes-per-epoch collected
via Nsight with the Text8 corpus for a fixed number of
epochs.

Implementation L1/TEX L2 DRAM Sum
FULL-W2V 94.760 88.723 41.851 225.334

FULL-Register 885.065 781.576 66.555 1,733.196

accSGNS 1,134.448 493.614 226.578 1,854.64

Wombat 2,303.525 1,432.774 45.799 3,782.098

to much more demand than the lower level caches can sat-

isfy, allowing the hardware cache to achieve some degree

of success but these accesses are not strictly necessary and

proper register allocation leads to demand reduction. As a

data-intensive algorithm, reducing memory demand helps to

circumvent the memory latency bottleneck of Word2Vec on

GPU architectures, contributing to the massive performance

increases seen in Section 5.2 between the FULL-Register

and FULL-W2V implementations. The latency bottleneck is

more pronounced on older architectures, where fewer SMs

with smaller caches and higher latency memory technologies

expose threads to longer access delays that are otherwise

difficult for the architecture to hide with other data-intensive

work.

We further leverage latency elimination in FULL-W2V,

which explicitly manages memory with lifetime reuse of con-
text words in addition to the negative sample optimizations.

Table 4 shows that FULL-W2V reduces overall memory de-

mand by 94.0%, 87.9%, and 87.0% over Wombat, accSGNS,

and FULL-Register respectively. The extreme reduction in

memory demand on other parts of the hierarchy is replaced

by reuse in Shared Memory, guaranteeing L1 hit latency on

each access that is not serviced by the rest of the memory hi-

erarchy. This is important because the data-intensive access

pattern ofWord2Vec is both sparse and highly stochastic. Un-

der these conditions, the GPU’s hardware-managed caches

cannot be expected to provide proper eviction policies to

maximize reuse for the algorithm, but lifetime reuse of context
words guarantees cache hits for the Word2Vec algorithm for

as long as can be statically known.

5.3.2 Managing GPU Resource Tradeoffs. We analyze our

effectiveness in managing resource tradeoffs by examining

scheduler and thread-level statistics, starting with device

processor and scheduler saturation. Table 6 shows that FULL-

W2V is within 99% of its theoretical occupancy, indicating

both inter-SM and intra-SM saturation of threads. Addition-

ally, we can see that active warps are near-peak levels with

appropriate (near 1) eligible warps-per-scheduler. This indi-

cates that many warps are progressing on some operation,

while a sufficient number of warps are available for sched-

uling. High activity and balanced eligible warps is a good

indication that our latency reduction operations eliminated

10
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Table 5: Instructions per Cycle and Thread Stall Breakdown. Arithmetic stalls include math pipe throttle and MIO. Overhead
stalls include wait, selection, barriers, dispatch, branch, no instruction, drain, sleep andmiscellaneous stalls. FULL-W2Vshows
significant improvements betweenhardware architectures, and also nearly eliminatesmemory stalls through effectivemanual
caching and data reuse.

XP V100
FULL-Register FULL-W2V FULL-Register FULL-W2V

IPC 1.19 2.78 2.38 3.22

Long Scoreboard 38.66 1.25 11.00 0.97

Short Scoreboard 4.49 3.43 4.19 2.95

Arithmetic 0.16 0.18 1.14 0.66

Overhead 13.05 10.48 7.93 6.35

Table 6: Average Issue Eligibility per Warp Scheduler per Cycle. Maximum active warps on both architectures is 16. FULL-
W2Vis always near-peak occupancy and has near-ideal eligible warps, indicating good latency hiding as well as scheduler
saturation.

XP V100
Wombat accSGNS FULL-Register FULL-W2V Wombat accSGNS FULL-Register FULL-W2V

Max Warps 11.03 12 16 13 11.03 12 16 9

Active Warps 4.59 11.08 15.86 9.59 4.66 9.41 14.92 8.99

Eligible Warps 0.16 1.33 0.42 0.99 0.18 1.09 1.86 1.90

Table 7: Mean embedding quality of five repeated trials us-
ing One Billion Words. Higher values are better.

SW WS-353 SimLex-999 COS-ADD COS-MUL
pWord2Vec 0.6070 0.3499 29.895% 29.166%

Wombat 0.5952 0.3596 29.661% 28.988%

FULL-W2V 0.5923 0.3582 29.775% 29.386%

a sufficient amount of latency to justify a lowered overall oc-

cupancy without harming our ability to hide the remaining

latency and still improve overall performance. This is also an

indication that we can continue to scale to future architec-

tures, as we are not approaching any hardware limitations

and scaling to new SMs is simply tied to batching additional

sentences.

We validate that our method reduces overall time spent

on latency, we look at lower-level per-thread metrics, in-

cluding overall IPC and its constituent breakdown. Table 5

shows that, despite improved performance, FULL-Register

still spends a great number of cycles stalled on latency costs,

particularly long scoreboard memory operations. On both

architectures, the introduction of lifetime reuse of context
words nearly eliminates the cost of long-access memory, in-

dicating that we nearly eliminate this cost. In turn, IPC is

drastically increased, shifting much of the remaining time to

compulsory overhead operations, including synchronization.

This single-thread improvement is highly validating of our

overall throughput gains.

5.3.3 Preserving EmbeddingQuality. We evaluate the embed-

ding quality of FULL-W2V and compare it against Wombat

and pWord2Vec as presented in Table 7. These counterparts

use the same batching semantics and negative sample reuse

policies as FULL-W2V and thus create a fair comparison.

FULL-W2V is statistically equivalent to the results generated

by both Wombat and pWord2Vec for every measure of the

training quality.

This positive result confirms that our algorithmic adjust-

ments described in Section 3.2, including fixed context win-

dow sizes, are valid. As demonstrated in [14], larger window

sizes are connected to divergence in learning quality between

high and low-frequency words, but variance in window sizes

does not appear to be critical to generating quality embed-

dings.

6 CONCLUSION AND FUTUREWORK
FULL-W2V advances the state-of-the-art single-GPU per-

formance across multiple hardware generations. We find

that each negative sample in a collection can be indepen-

dently updated over context words without affecting embed-

ding quality, however the sequential accumulation of context

word updates throughout sliding windows remains neces-

sary for convergence. Based on these findings, we improve

the efficiency of fine-grain parallelism with highly effective

memory access optimizations — cache negatives in registers

and context words in shared memory — to fully exploit their

reuse. We show that the combination of fine-grain paral-

lelism, novel memory demand reductions, and data reuse

optimizations can generate synergistic performance gains

and benefits on GPU hardware.
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There are several directions for future work. There is a

lack of understanding of the exact limitations of negative

sample reuse without adversely affecting embedding quality.

FULL-W2V and future algorithms can benefit from reuse

of negatives over more than one context window. Related

work shows that altering sentence batching and negative

sample selection increases limits of guaranteed locality for

additional performance benefits. FULL-W2V is positioned to

explore such benefits. Finally, FULL-W2V can be extended

to support multiple GPUs on the same node to further accel-

erate training and support large networks and corpus.
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