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Performance Autotuning: Necessary but Costly

▪ Empirical tuning and optimization
– Large space
– Sophisticated search

▪ Tuning is perpetually necessary
– New systems: Aurora
– New applications: Exascale 

Computing Project

▪ Empirical testing is costly
– Efficiency is key!
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Performance autotuning navigates very large search 
spaces and identifies high-performing configurations, 
ie: top-100 of 10,000



▪ Simple matmul kernel:
– (A⨉B)⨉(C⨉D)
– Ten tunable Polly parameters

• 376,320 configurations
– <25 seconds per evaluation

▪ 100+ days tuning to try each configuration once!

▪ Same kernel, different input sizes:
– Different optimum configurations

Even Simple Kernels Are Expensive!
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▪ Reuse knowledge in related tasks
– Limit tuning costs

▪ Gain knowledge from “cheap” tasks 
– Near-optimal configurations
– Poor configurations

▪ Reuse it on “expensive” tasks to 
maximize efficiency 
– Enable few-shot
– Converge to high performance

Transfer Learning (TL) Autotuning: Few-Shot
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Existing Searches and Autotuners

▪ Model-Free Techniques
– Simple to define
– Minimal convergence guarantees, if any

▪ Model-Based Techniques
– Sophisticated definition and capabilities
– Long-term convergence usually guaranteed

• Short-term results often lackluster
• Restarting from scratch is EXPENSIVE

▪ Primary gap:
– Aggressive, transferrable model-based search that is simple to define
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Existing TL Shortcomings

▪ No obvious model-free transfer technique
– Generally TL complicates definitions
– Would be great to have a simpler definition for TL

▪ Model-based regression requires ground truth
– Expensive restart NOT completely avoided
– Ideally, TL permits greater shortcuts

▪ Machine-learning scales to BIG DATA
– Desirable to work with minimal source data
– Long-term convergence is too slow
– Better than restarting from scratch, but we can do even better!
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Gaussian Copula (GC) TL-Based Autotuning

▪ Maximize few-shot performance for new input sizes
– Common tuning setting for HPC

▪ Simple model capable of transfer without regression
– Reduce need for ground truth

• Scale down to minimal data
• Immediate performance on new scales

– Provide probability estimate of viability
• Budgeting with zero evaluations
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▪ Fit to tuning space definition and 
prior data from various input sizes
– Prompt with new input size
– Generate candidate 

configurations to evaluate

▪ Demonstrate with real benchmarks
– FIRST evaluation: 64% peak

few-shot speedup
– 12.81✕ higher peak speedup 

(20.58→33.39✕) vs previous 
SOTA

GC Few-Shot TL Autotuning
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▪ Multivariate probability distribution
▪ Components

– Disjoint marginal per variable
– Correlations as joint distribution

▪ Capabilities
– Probability integral transform

• Samples ↔ Distributions
– Conditional sampling

• Prescribe some marginal values
• Adjust remaining variance

GC Model
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Toy Generative Transfer Tuning Problem
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▪ Variables: x0, size, y
– All linear relations
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Toy Generative Transfer Tuning Problem
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▪ Variables: x0, size, y
– All linear relations

▪ Sample from distribution
– Resemble original 

samples
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Toy Generative Transfer Tuning Problem

▪ Variables: x0, size, y
– All linear relations

▪ Sample from distribution
– Resemble original 

samples

▪ Conditionally sample for 
specific behaviors
– Limit expression to 

relevant subset
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Using Distributions As Search

▪ GC lacks regression
– No comparisons/ranking
– Minimal data describes a distribution

▪ Provide search boundaries
– Under-represented = Poor traits
– Over-represented = Solved traits
– Variance = Opportunity to explore

▪ What makes a good distribution?
▪ How do we use it?
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“Good” Distribution from Filtered Data

▪ Needs limited coverage of tuning space
– # generable / total space size
– Reduce, but do not eliminate

▪ Needs specificity to match optimal area
– KL Divergence compares probability 

distributions (distance metric)
– Compare:

• Brute-force top-10% configs
• Filtered top-X% source data

– Lower divergence = better match
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Filtering: Out with the Bad

▪ Filter source data via observed quantiles
– Remove poor features: < top-50%
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Filtering: Preserve Sufficient Coverage

▪ Filter source data via observed quantiles
– Remove poor features: < top-50%

▪ Careful! Do not filter too much!
– Empirically require: > top-15%
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Filtering: Empirical Ideal

▪ Filter source data via observed quantiles
– Remove poor features: < top-50%

▪ Careful! Do not filter too much!
– Empirically require: > top-15%

▪ Suggest: top-30%
– Sufficient but minimized space 

coverage
– Divergence not increasing too much
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Conditional Sampling as Transfer Mechanism

▪ Different scales require different solutions
– General sampling does not respect input scale

▪ Add input scale feature representation (arbitrary marginal variable)
– Inference uses conditional sampling for the target scale

▪ Conditioning reconstructs a scale-specific sub-distribution
– Marginal distributions adjusted alongside correlations
– All data utilized, dynamically transferred
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▪ Hypergeometric sampling (blind marble picking):
– |C| configurations (marbles)

• |I| near-optimal (red marbles)
– Up to k samples

▪ Incomplete coverage from GC
– Remove marbles before sampling!

▪ Probability estimation
– Unique GC samples are proxy for |C|

• Estimate reduction in |I|

Budget Estimation: Probability of Success
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Experiment Design

▪ Evaluation Platform
– 2✕ AMD EPYC 7742 (64-core; 128-logical)
– 1✕ 40 GB NVIDIA A100
– Clang with Polly LLVM loop optimizer

▪ Each application source sizes:
– Bayesian Optimization with Random Forest
– 200✕ each for Small, Medium, Large

▪ Each application target sizes:
– 30✕ each for Small-Medium, Medium-Large, Extra-Large
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Compared Approaches

▪ Baseline
– Parameters derived from original source
– Reference for speedup

▪ Bayesian Optimization (BO)
– From scratch without TL; same settings as training dataset

▪ All TL use the same prior dataset from BO
– GPTune DTLA

• SOTA TL autotuner using Gaussian Processes
– GC-TLA (ours)

• Fit to top-30% source data; conditionally sample for TL

21
Motivation > Method > [Experiments] > Conclusions



Polybench: High Efficiency and Performance
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▪ 3mm XL: 12.81✕ more 
speedup than prior SOTA



Polybench: High Efficiency and Performance

▪ 3mm XL: 12.81✕ more 
speedup than prior SOTA

▪ GC exceeds prior SOTA 
performance
– 1st evaluation: 50%
– Within budget: 80%

▪ Worst margin of 
performance is -0.24✕
speedup
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Polybench Demonstrates Consistency

▪ GC selects better configuration than prior work almost every single evaluation
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ECP Demonstrates Sophistication

▪ Speedup is difficult!!

▪ GC’s best results 
achieved on-budget

▪ GC continues to succeed
with complex spaces

▪ Worst margin of 
performance is -0.02✕
speedup
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Continued Success with Greater Complexity

▪ Better budget result in less time than prior work
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▪ Few-shot TL with GC
– Simple definition
– Aggressive search for high-performing results
– Able to predict search budget

• Minimize costs, estimate utility

▪ Future work
– Enhance GC
– Apply to full ECP applications

Conclusions and Future Work
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Open Source: https://github.com/tlranda/GC_TLA

Contact: tlranda@clemson.edu
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