

Rong Ge,

Transfer-Learning-Based Autotuning **Using Gaussian Copula**

Thomas	Randall,
Jaehoon	Koo,

PhD Candidate Professor Clemson University Universitv

Brice Videau, Michael Kruse, Xingfu Wu, Paul Hovland, and Mary Hall.

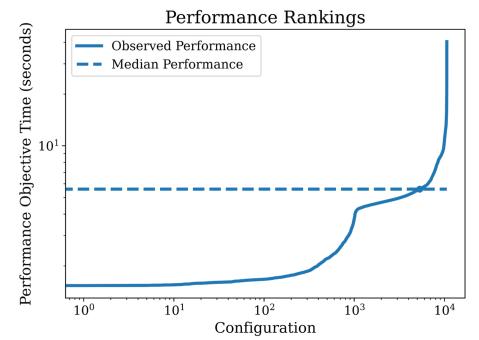
Argonne National Laboratory; University of Utah

Associate Hanyang Clemson University Oak Ridge National Laboratory

Prasanna Balaprakash

Performance Autotuning: Necessary but Costly

- Empirical tuning and optimization
 - Large space
 - Sophisticated search
- Tuning is perpetually necessary
 - New systems: Aurora
 - New applications: Exascale Computing Project
- Empirical testing is costly
 - Efficiency is key!



Performance autotuning navigates very large search spaces and identifies high-performing configurations, ie: top-100 of 10,000

Even Simple Kernels Are Expensive!

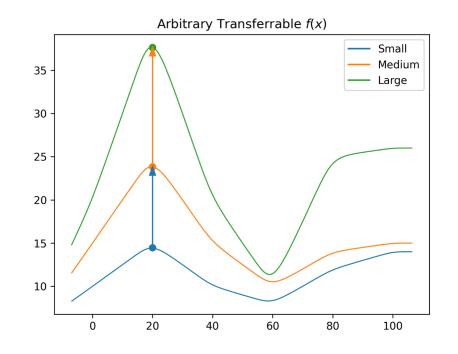
 Simple matmul kernel: 	Parameter	Values
 (A×B) × (C×D) Ten tunable Polly parameters ——— 	Tile Sizes	[4-2048], [4-2048], [4-2048]
• 376,320 configurations	Loop Interchange	[Yes, N/A]
– <25 seconds per evaluation	Array Packing	$[Yes, N/A] \times 6$

- 100+ days tuning to try each configuration once!
- Same kernel, different input sizes:
 - Different optimum configurations

S		Input Scale					
		Small	Medium	Large			
	Packed Arrays	A,E,F	F	A,B,E			
	Loop Interchanges	N/A	N/A	Outer Exchange			
	Tile Sizes	16, 2048, 4	96, 16, 4	4, 2048, 4			

Transfer Learning (TL) Autotuning: Few-Shot

- Reuse knowledge in related tasks
 Limit tuning costs
- Gain knowledge from "cheap" tasks
 - Near-optimal configurations
 - Poor configurations
- Reuse it on "expensive" tasks to maximize efficiency
 - Enable few-shot
 - Converge to high performance



Existing Searches and Autotuners

- Model-Free Techniques
 - Simple to define
 - Minimal convergence guarantees, if any
- Model-Based Techniques
 - Sophisticated definition and capabilities
 - Long-term convergence usually guaranteed
 - Short-term results often lackluster
 - Restarting from scratch is **EXPENSIVE**
- Primary gap:
 - Aggressive, transferrable model-based search that is simple to define

[Motivation] > Method > Experiments > Conclusions

Existing TL Shortcomings

- No obvious model-free transfer technique
 - Generally TL complicates definitions
 - Would be great to have a simpler definition for TL
- Model-based regression requires ground truth
 - Expensive restart *NOT* completely avoided
 - Ideally, TL permits greater shortcuts
- Machine-learning scales to BIG DATA
 - Desirable to work with *minimal* source data
 - Long-term convergence is too slow
 - Better than restarting from scratch, but we can do even better!

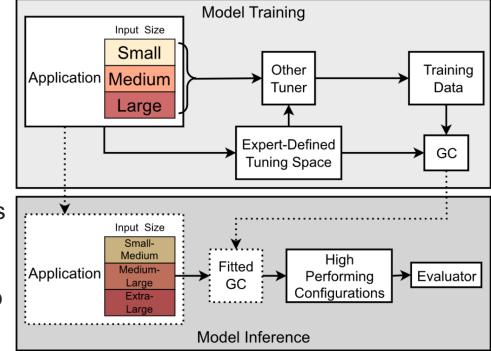
[Motivation] > Method > Experiments > Conclusions

Gaussian Copula (GC) TL-Based Autotuning

- Maximize few-shot performance for new input sizes
 - Common tuning setting for HPC
- Simple model capable of transfer without regression
 - Reduce need for ground truth
 - Scale *down* to minimal data
 - Immediate performance on new scales
 - Provide probability estimate of viability
 - Budgeting with *zero evaluations*

GC Few-Shot TL Autotuning

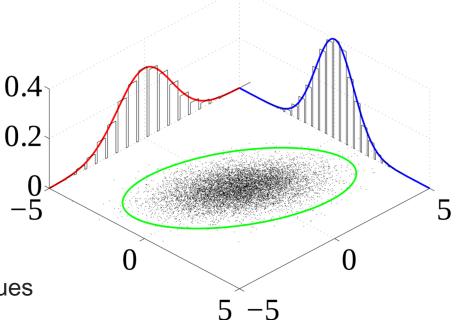
- Fit to tuning space definition and prior data from various input sizes
 - Prompt with new input size
 - Generate candidate configurations to evaluate
- Demonstrate with real benchmarks
 - FIRST evaluation: 64% peak few-shot speedup
 - 12.81× higher peak speedup (20.58→33.39×) vs previous SOTA

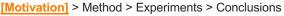


Motivation > [Method] > Experiments > Conclusions

GC Model

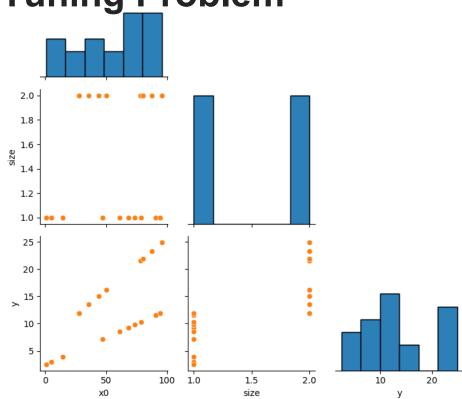
- Multivariate probability distribution
- Components
 - Disjoint marginal per variable
 - Correlations as joint distribution
- Capabilities
 - Probability integral transform
 - Samples ↔ Distributions
 - Conditional sampling
 - Prescribe some marginal values
 - Adjust remaining variance





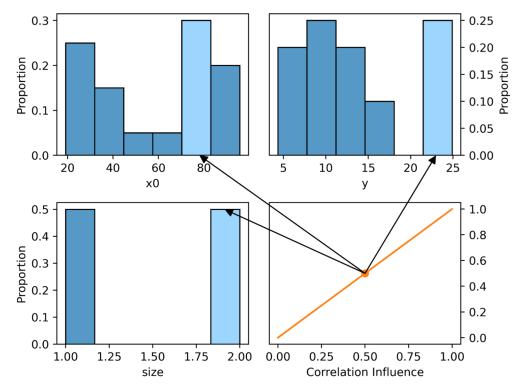
Toy Generative Transfer Tuning Problem

Variables: x0, size, y
 All linear relations



Toy Generative Transfer Tuning Problem

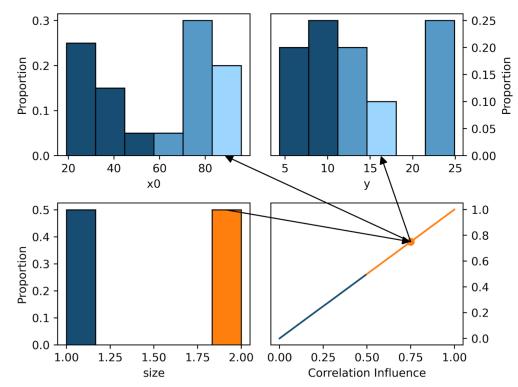
- Variables: x0, size, y
 All linear relations
- Sample from distribution
 - Resemble original samples



CLEMS

Toy Generative Transfer Tuning Problem

- Variables: x0, size, y
 All linear relations
- Sample from distribution
 - Resemble original samples
- Conditionally sample for specific behaviors
 - Limit expression to relevant subset



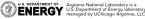
Using Distributions As Search

- GC lacks regression
 - <u>No</u> comparisons/ranking
 - Minimal data describes a distribution
- Provide search boundaries
 - Under-represented = Poor traits
 - Over-represented = Solved traits
 - Variance = Opportunity to explore
- What makes a good distribution?
- How do we use it?

"Good" Distribution from Filtered Data

- Needs limited coverage of tuning space
 - # generable / total space size
 - Reduce, but do not eliminate
- Needs specificity to match optimal area
 - KL Divergence compares probability distributions (distance metric)
 - Compare:
 - Brute-force top-10% configs
 - Filtered top-X% source data
 - Lower divergence = better match

	Filtering	Tuning Space	KL
	Quantile (%)	Coverage	Divergence
	100	1.00	0.1878
ĺ	90	1.00	0.1713
	80	1.00	0.1609
	70	1.00	0.1525
/[60	0.91	0.1409
	50	0.91	0.1212
ĺ	40	0.91	0.1333
ľ	30	0.82	0.1713
	20	0.07	0.2766
	10	0.06	0.3079



Filtering: Out with the Bad

- Filter source data via observed quantiles
 - Remove poor features: < top-50%

Filtering	Tuning Space	KL
Quantile (%)	Coverage	Divergence
100	1.00	0.1878
90	1.00	0.1713
80	1.00	0.1609
70	1.00	0.1525
60	0.91	0.1409
50	0.91	0.1212
40	0.91	0.1333
30	0.82	0.1713
20	0.07	0.2766
10	0.06	0.3079

Filtering: Preserve Sufficient Coverage

- Filter source data via observed quantiles
 - Remove poor features: < top-50%
- Careful! Do not filter too much!
 - Empirically require: > top-15%

Filtering	Tuning Space	KL	
Quantile (%)	Coverage	Divergence	
100	1.00	0.1878	
90	1.00	0.1713	
80	1.00	0.1609	
70	1.00	0.1525	
60	0.91	0.1409	
50	0.91	0.1212	
40	0.91	0.1333	
30	0.82	0.1713	
20	0.07	0.2766	
10	0.06	0.3079	

Filtering: Empirical Ideal

- Filter source data via observed quantiles
 - Remove poor features: < top-50%
- Careful! Do not filter too much!
 - Empirically require: > top-15%
- Suggest: top-30%
 - Sufficient but minimized space coverage
 - Divergence not increasing too much

Filtering	Tuning Space	KL	
Quantile (%)	Coverage	Divergence	
100	1.00	0.1878	
90	1.00	0.1713	
80	1.00	0.1609	
70	1.00	0.1525	
60	0.91	0.1409	
50	0.91	0.1212	
40	0.91	0.1333	
30	0.82	0.1713	
20	0.07	0.2766	
10	0.06	0.3079	

Motivation > [Method] > Experiments > Conclusions

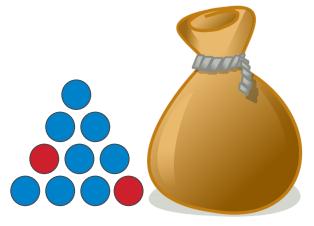
Conditional Sampling as Transfer Mechanism

- Different scales require different solutions
 - General sampling does not respect input scale
- Add input scale feature representation (arbitrary marginal variable)
 - Inference uses conditional sampling for the target scale
- Conditioning reconstructs a scale-specific sub-distribution
 - Marginal distributions adjusted alongside correlations
 - All data utilized, dynamically transferred

Motivation > [Method] > Experiments > Conclusions

Budget Estimation: Probability of Success

- Hypergeometric sampling (blind marble picking):
 - |C| configurations (marbles)
 - |I| near-optimal (red marbles)
 - Up to k samples
- Incomplete coverage from GC
 - Remove marbles before sampling!
- Probability estimation
 - Unique GC samples are proxy for |C|
 - Estimate reduction in |I|



$$P(\#Optimal \ge 1) = \sum_{i=1}^{k} \frac{\binom{|I|}{i} \binom{|C|-|I|}{k-i}}{\binom{|C|}{k}}$$

Motivation > [Method] > Experiments > Conclusions () ENERGY Argone National Laboratory is a US Operative of Energy laboratory LS Operative of Energy laboratory LS Operative of Conception of Conc

Experiment Design

- Evaluation Platform
 - 2× AMD EPYC 7742 (64-core; 128-logical)
 - 1 \times 40 GB NVIDIA A100
 - Clang with Polly LLVM loop optimizer
- Each application source sizes:
 - Bayesian Optimization with Random Forest
 - 200× each for Small, Medium, Large
- Each application target sizes:
 - 30× each for Small-Medium, Medium-Large, Extra-Large

Benchmark	#Params	# Configurations
3mm	10	376,320
Covariance	5	5,324
Floyd–Warshall	5	5,324
Heat3d	6	10,648
LU	5	5,324
Syr2k	6	10,648
AMG	9	1,180,980
RSBench	9	5,196,312
XSBench	8	577,368
SW4Lite	8	4,752

Compared Approaches

- Baseline
 - Parameters derived from original source
 - Reference for speedup
- Bayesian Optimization (BO)
 - From scratch without TL; same settings as training dataset
- All TL use the same prior dataset from BO
 - GPTune DTLA
 - SOTA TL autotuner using Gaussian Processes
 - GC-TLA (ours)
 - Fit to top-30% source data; conditionally sample for TL

Motivation > Method > [Experiments] > Conclusions

Polybench: High Efficiency and Performance

 3mm XL: 12.81× more speedup than prior SOTA

Γ				Peak Speedup (# Evaluation Discover				
	App.	Scale		GC			GPTune	
			1^{st}	Budget	Best	Best	Best	
Γ		SM	5.09	5.70 (23)	5.70 (23)	3.03 (26)	5.53 (30)	
	3mm	ML	5.25	5.57 (29)	5.57 (29)	3.29 (30)	5.16 (16)	
		XL	27.10	33.39 (18)	33.39 (18)	20.58 (30)	18.96 (25)	

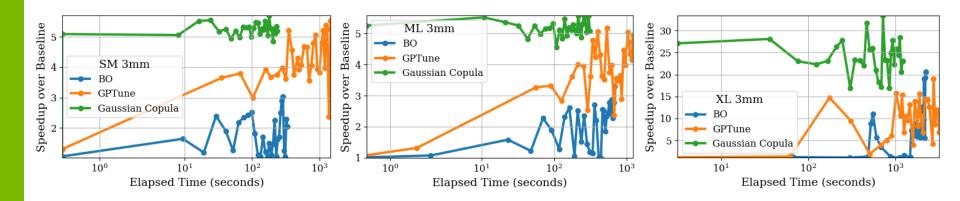
Polybench: High Efficiency and Performance

- 3mm XL: 12.81× more speedup than prior SOTA
- GC exceeds prior SOTA performance
 - 1st evaluation: 50%
 - Within budget: 80%
- Worst margin of performance is -0.24× speedup

		Peak Speedup (# Evaluation Discovered)				
App.	Scale		GC		BO	GPTune
		1^{st}	Budget	Best	Best	Best
	SM	5.09	5.70 (23)	5.70 (23)	3.03 (26)	5.53 (30)
3mm	ML	5.25	5.57 (29)	5.57 (29)	3.29 (30)	5.16 (16)
	XL	27.10	33.39 (18)	33.39 (18)	20.58 (30)	18.96 (25)
	SM	21.10	21.98 (21)	21.98 (21)	21.83 (28)	13.30 (30)
Cov.	ML	4.13	4.27 (26)	4.27 (26)	3.87 (25)	4.07 (30)
	XL	23.04	23.96 (2)	23.96 (2)	8.43 (12)	17.88 (9)
	SM	1.01	1.02 (17)	1.02 (17)	1.02 (20)	1.01 (26)
Floyd-W.	ML	1.02	1.02 (1)	1.02 (1)	1.01 (25)	1.01 (3)
	XL	0.99	1.00 (29)	1.00 (29)	1.01 (16)	1.01 (20)
	SM	1.83	2.03 (5)	2.06 (18)	2.21 (15)	2.30 (28)
Heat3d	ML	1.89	1.89 (1)	2.06 (10)	2.12 (25)	1.80 (6)
	XL	1.50	2.92 (2)	3.09 (18)	2.16 (13)	2.75 (29)
	SM	1.16	1.18 (25)	1.18 (25)	1.12 (30)	1.11 (19)
LU	ML	1.15	1.20 (24)	1.20 (24)	1.17 (26)	1.19 (5)
	XL	1.00	1.00 (3)	1.00 (3)	0.98 (13)	1.00 (29)
	SM	2.06	2.90 (2)	3.32 (18)	2.34 (12)	2.41 (11)
Syr2k	ML	0.80	1.17 (2)	1.22 (16)	0.93 (29)	0.85 (30)
	XL	0.95	1.09 (2)	1.09 (2)	0.42 (23)	0.85 (26)

Polybench Demonstrates Consistency

GC selects better configuration than prior work almost every single evaluation



ECP Demonstrates Sophistication

- Speedup is difficult!!
- GC's best results achieved on-budget
- GC continues to succeed with complex spaces
- Worst margin of performance is -0.02× speedup

				Peak Speedu	peedup (# Evaluation Discovered)		
	App.	Scale		GC		BO	GPTune
			1^{st}	Budget	Best	Best	Best
		SM	0.87	0.91 (3)	0.91 (3)	0.92 (19)	0.90 (19)
	AMG	ML	0.93	0.93 (1)	0.93 (1)	0.93 (20)	0.87 (3)
_		XL	0.95	0.95 (5)	0.98 (23)	0.97 (27)	0.93 (25)
	RSBench	SM	1.40	1.40 (3)	1.40 (8)	1.25 (29)	1.13 (22)
		ML	1.02	1.04 (2)	1.04 (15)	0.97 (22)	1.04 (27)
		XL	1.00	1.00 (1)	1.01 (10)	0.97 (14)	1.02 (18)
	XSBench	SM	1.20	1.20 (7)	1.21 (28)	1.17 (24)	1.21 (24)
		ML	1.05	1.06 (4)	1.06 (4)	1.04 (6)	1.07 (5)
		XL	1.01	1.02 (5)	1.03 (24)	0.99 (6)	1.05 (5)
		SM	0.99	1.00 (6)	1.00 (6)	0.98 (26)	0.99 (17)
	SW4Lite	ML	0.99	0.99 (10)	0.99 (16)	0.99 (3)	0.99 (30)
		XL	0.99	0.99 (12)	0.99 (12)	0.99 (1)	0.99 (14)

Continued Success with Greater Complexity

Better budget result in less time than prior work Baseline 0.9 Baseline Baseline 1.0 1.1 0.9 0.8 0.8 over over 0.8 0.7 0.7 SM XSBench ML XSBench XL XSBench Speedup 0.6 dnpeedno Speedup BO BO BO 0.6 07 GPTune - GPTune GPTune 0.6Gaussian Copula 🗕 Gaussian Copula Gaussian Copula 10^{2} 10³ 10^{1} 10^{2} 10^{1} 10^{2} 10^{3} 10^{1} 10^{3} Elapsed Time (seconds) Elapsed Time (seconds) Elapsed Time (seconds) 0.990 0.985 over Baseline Baseline 0.995 0.994 0.990 SM SW4Lite 0.985 OVer 0.980 0.980 0.992 0.980 GPTune ML SW4Lite XL SW4Lite Speedup Speedup Speedup aussian Copula BO 0.975 0.990 0.975 GPTune GPTune 0.970 Gaussian Copula Gaussian Copula 0.9700.965 10^{2} 102 10^{2} 10^{3} 10^{3} 10¹ 10^{3} 10^{1} 10^{1} Elapsed Time (seconds) Elapsed Time (seconds) Elapsed Time (seconds)

Motivation > Method > [Experiments] > Conclusions

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Conclusions and Future Work

- Few-shot TL with GC
 - Simple definition
 - Aggressive search for high-performing results
 - Able to predict search budget
 - Minimize costs, estimate utility
- Future work
 - Enhance GC
 - Apply to full ECP applications

Motivation > Method > Experiments > [Conclusions]

Open Source: https://github.com/tlranda/GC_TLA

Contact: tlranda@clemson.edu

This research was partially supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration, and by U.S. National Science Foundation under Grant CCF-1942182. This material is based upon work supported by the U.S. Department of Energy, Office of Science, under contract number DE-AC02-06CH11357.

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

