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Abstract—We examine whether in-context learning with Large
Language Models (LLMs) can effectively address the challenges
of High-Performance Computing (HPC) autotuning. LLMs have
demonstrated remarkable natural language processing and ar-
tificial intelligence (AI) capabilities, sparking interest in their
application across various domains, including HPC. Performance
autotuning – the process of automatically optimizing system
configurations to maximize efficiency through empirical eval-
uation – offers significant promise for enhancing application
performance on larger systems and emerging architectures.
However, this process remains computationally expensive due
to the combinatorial explosion of configuration parameters and
the complex, nonlinear relationships between configurations and
performance outcomes.

We pose a critical question: Can LLMs, without task-specific
fine-tuning, accurately infer performance-configuration patterns
by combining in-context examples with latent knowledge? To
explore this, we leverage empirical performance data from real-
world HPC systems, designing structured prompts and queries
to evaluate LLMs’ capabilities. Our experiments reveal inherent
limitations in applying in-context learning to performance au-
totuning, particularly for tasks requiring precise mathematical
reasoning and analysis of complex multivariate dependencies. We
provide empirical evidence of these shortcomings and discuss
potential research directions to overcome these challenges.

Index Terms—LLM, In Context Learning, HPC, Performance
Autotuning

I. INTRODUCTION

Large Language Models (LLMs) have transformed artifi-
cial intelligence, extending beyond their origins in natural
language processing (NLP) to drive innovation across diverse
fields. Trained on massive text corpora, LLMs leverage self-
supervised learning and transformer-based attention to achieve
human-like text generation, pattern recognition, and complex
reasoning. Beyond their general capabilities, these models can
be fine-tuned with domain-specific data to deliver tailored
solutions in diverse domains including healthcare, finance,
engineering, and scientific computing. A key strength of LLMs
is their ability to perform few-shot or zero-shot learning,
enabling them to adapt to novel tasks with minimal in-context
labeled examples and without fine-tuning [1]. This adaptability
makes them a potential tool for tackling challenges in HPC
performance optimization, where exploring vast parameter
spaces is essential.

HPC performance optimization is a necessity due to the
ever-evolving system architectures. As HPC systems grow

in size and heterogeneity to support grand challenges and
business-critical applications, achieving maximum perfor-
mance requires tuning both new and existing applications.
Given the substantial number of potential optimizations, in-
cluding loop unrolling, blocking, concurrency, and topology,
manually exploring all possible configurations is impractical.
Autotuning provides a systematic approach to optimizing
performance by evaluating a small subset of configurations
on the target platform. Using intelligent search algorithms, it
efficiently navigates the vast parameter space, avoiding the im-
practicality of exhaustive searches. Notable approaches include
Bayesian optimization, GPTune, YTOPT, and Bliss [2]–[4]. By
leveraging autotuning, HPC applications can adapt to emerging
architectures and scale effectively, ensuring high performance
and power efficiency.

Despite significantly reducing the number of evaluations,
autotuning typically requires tens to hundreds of empirical
evaluations. Each evaluation involves generating and executing
an executable with the specified parameter configuration. Even
simple kernels may take hours to tune, while more complex
applications with larger search spaces can require days. To fur-
ther reduce costs, transfer learning methods leverage data from
related autotuning tasks (e.g., similar input sizes or kernels).
However, they still require dozens or more evaluations [5].

This paper explores a critical question: Is in-context learning
with LLMs, without fine-tuning, feasible for HPC performance
autotuning? In-context learning has demonstrated success
across a wide range of tasks [6]–[9], particularly in natural
language processing applications such as translation, sum-
marization, arithmetic problem-solving, and code generation
and programming assistance. Recently, in-context learning for
mathematical functions has gained attention. Studies indicate
that functions such as linear, polynomial, and more complex
mathematical relationships can be learned through in-context
learning [10]–[13]. However, most of this research focuses
on training models from scratch using function-specific data
rather than leveraging pre-trained LLMs. Moreover, studies
on complex multivariate patterns typical in HPC application
performance remain limited.

To explore possible answers to this question, we conduct an
initial study using the open-source LLaMA model and empiri-
cal performance tuples consisting of multi-dimensional config-
urations and execution times collected from HPC workloads



on real systems. To facilitate the use of LLMs, we present
the performance data in a natural language format. We design
various structured in-context prompts and queries, gradually
increasing the number of in-context labeled examples.

Our experiments lead us to conclude that trivial in-context
learning with LLMs is ill-suited for performance analysis of
HPC applications and systems. Our in-depth analysis suggests
that the model’s output tends to parrot traits taken from the
prompt without insight into what traits should be prioritized.
It fails to generalize underlying patterns and cannot infer
meaningful insights.

Our main contributions include:
• We conduct an initial study on the feasibility of using in-

context learning with LLMs – without task-specific fine-
tuning – to generalize performance-configuration patterns
in HPC applications and systems.

• We design structured prompts and queries, leveraging
actual HPC performance data to evaluate in-context learn-
ing. We also analyze the results using LLM internal
logits.

• We find that trivial in-context learning fails for HPC
performance autotuning, as it falls outside the spectrum
of successful few-shot learning.

• We discuss potential approaches to leveraging in-context
learning and LLMs for HPC performance autotuning.

Our source code and related artifacts for experiments are
publicly available at https://github.com/tlranda/LM-Peel/.

II. RELATED WORKS

A. Evaluation and Diversification of LLM Capabilities

The study of Natural Language Processing (NLP) includes
diverse language-oriented tasks and evaluations, with many
new additions designed specifically for LLMs [14]. LLMs are
designed to generate text, with most applications involving
some degree of translation and summarization. Summariza-
tion is primarily evaluated by automatic techniques such as
ROUGE [15], where directly recalling subsequences of words
in the reference text is rewarded. This means that models
are trained to repeat sub-sequences of reference text, which
is often a desirable trait to represent in natural language
communications. Conversational agents repeat and rephrase
questions, key points, and prior context to indicate a sense
of “understanding” which frequently correlates with higher
scores from human evaluators and standard evaluation datasets
such as those used in OpenAI’s evaluations of GPT-2 [16].

One of the first breakthrough examples of using LLMs
for numeric prediction came from OpenAI’s GPT-3 white pa-
per [1]. This evaluation focused on two- to five-digit addition
and subtraction, as well as two-digit multiplication and single-
digit arithmetic with three operations. For each of the above,
the authors randomly generate 2,000 evaluation problems
where all inputs are nonnegative integers, and the models are
evaluated in zero-shot, one-shot, and few-shot settings. The
authors repeat these experiments with various sizes of models,
ranging from 100 million to 175 billion parameters, finding

that models in the multi-billion parameter ranges begin to have
nontrivial accuracy in their evaluations, and the largest models
begin to approach 100% accuracy on the simplest problems.

The authors attempt to check the training data for regular
expressions that directly match two possible representations
of three-digit arithmetic that they evaluate. They found 17
exact matches for addition and two for subtraction that could
have been memorized during training. These results lead to
a conclusion that the < 1% chance of directly memorizing
answers and the “human-like” mistakes of forgetting to carry
a one may indicate that very large models develop some
level of arithmetic capability at scale to generalize their next-
token-prediction better rather than rote-memorize arithmetic
examples from the training data.

Since this point, many additional techniques have built
upon this foundational hypothesis. Vector Databases and Re-
trieval Augmented Generation leverage the recency bias of
LLMs to augment available knowledge bases with in-context
learning (ICL) rather than fine-tuning or retraining [17]–
[19]. Other efforts attempt to improve LLM capabilities by
training new foundational models for particular tasks, such as
ChipNEMO [20] and TabPFN [21].

B. HPC Performance Analysis and Autotuning

The HPC community frequently utilizes performance pre-
dictions to expand the scope of optimization efforts and
maximize potential gains. These predictions must be accurate
despite the diversity of hardware configurations and complex-
ity of programs, especially in the absence of extensive data
and custom-tuned models. There are myriad efforts within
HPC to approach the problem of performance modeling and
optimization. To meet the broadest optimization needs in HPC,
autotuning techniques [2], [3] treat hardware configurations,
program source code and compiler interfaces as tunable black
boxes. These techniques learn the relationship between tunable
components and the performance objective through surrogate
modeling based on a limited number of empirical observations.

a) LLAMBO as an LLM Autotuner: LLM-Assisted
Bayesian Optimization (LLAMBO) [22] demonstrated a
prompting methodology to permit LLMs to perform autotun-
ing in several practical manners:

• Discriminative surrogate model: Presents several con-
figurations and their corresponding performance, then
predict the performance of an unknown configuration.

• Generative surrogate model: Performs the same task
as the discriminative model but uses N-ary classification
labels instead of regression.

• Candidate sampling: Inverts the discriminative relation-
ship by proposing a configuration expected to produce a
given performance value. This is a novel means of search
relative to other techniques in the field.

LLAMBO is evaluated on common machine learning
datasets from Scikit-Learn rather than HPC tuning problems.
However, it lays a foundation that can be broadly applied to
HPC autotuning and many other domains. The discriminative



surrogate approach has also been applied to Neural Architec-
ture Search [23], Bayesian statistical modeling [24], and even
cryptocurrency stock price predictions [25].

The underpinning hypothesis for why LLMs can succeed
at these diverse tasks remains similar across these works,
namely sourcing a belief that the vast general pre-training
permits these models to capture and meaningfully internalize
some concept of “world knowledge” relevant to the problem.
This world knowledge is connected to the provided context,
whereupon the LLM can produce surprisingly effective results
despite the unusual setting relative to its trained use case.

III. EXPERIMENTAL SETTING AND APPROACH

Our experiments use LLMs to predict runtimes for a fixed
program and hardware platform with configurable optimiza-
tions at the source-code level that offer different performance
tradeoffs. This is a common application tuning problem in
HPC. However the complexity of HPC systems and programs
often necessitates efforts from teams of domain scientists and
system experts to achieve meaningful improvements. Even
with the aid of optimization tools and profiling techniques,
these efforts do not scale across a large number of applications.
Given the capabilities demonstrated by LLMs and the vast
amount of text available on hardware, systems, and program
optimization, it is reasonable to expect that these models could
perform certain amounts of optimization.

Our experiments use the Meta-Llama 3.1 8B instruction-
tuned model [26]. We run the model locally to maintain
complete control over its operations and facilitate analyses
requiring direct access to model logits from generation. We
focus on predicting program runtime performance in a dis-
criminative surrogate manner.

A. HPC Application and Performance Dataset

Our experiments consider simple source-code level modi-
fications to improve the performance of a compute-bounded
loop nest from the Polybench/C syr2k kernel [27] via loop
optimizations. The configuration space includes loop tile sizes,
an optional loop interchange and two independent and optional
packing operations to prefetch portions of the input arrays
accessed by the loop. The pseudocode of the loop nest is
presented in Algorithm 1.

The best configurations of this kernel vary based on hard-
ware and the scale of the array operands specified by M
and N . We utilize previously collected data [5] that provides
performance measurements for all 10,648 unique configura-
tions at two different sizes for M and N on a fixed hardware
platform. The empirical data was collected on a Linux machine
with 320GB 2x AMD EPYC 7742 64-core processor (128
total core), 1 TB DDR4 running Ubuntu 20.04.2 LTS. The
source code configurations are based on Polly [28] LLVM
loop optimizations for Clang compiler version 13.0.0. The
Polly documentation and discussion could be present in LLM
pretraining data, but we expect the model to rely on general
optimization knowledge rather than specific knowledge of this
framework. The performance data we utilize was not available

Algorithm 1 Pseudocode for the loop-nest to be optimized
from Polbench/C’s syr2k application
Require: Arrays A[N,M ], B[N,M ], C[N,N ]
Require: Tile sizes ii, jj, kk

(Optional: Pack array A)
(Optional: Pack array B)
(Optional: Interchange order of i and j loops)
for i = 0 to N in tiles of size ii do

for j = 0 to M in tiles of size jj do
for k = 0 to i in tiles of size kk do

C[i, k]← A[k, j] ∗ α ∗B[i, j] +B[k, j] ∗ α ∗A[i, j]
end for

end for
end for

during pretraining and cannot be memorized due to model’s
training cutoff date of December 2023.

B. Design of User Prompts and In-context Examples

Following the LLAMBO [22] prompting methodology for
discriminative surrogate modeling, we provide the LLM with
one or more in-context examples of configuration-runtime
relationships and task it with predicting a runtime as a decimal
digit sequence for a previously unseen configuration. The
prompt consists of three parts: system instructions, problem
description, and user ICL and query; an example prompt is
shown with highlights for each component in Figure 1. The
system prompt instructs the model on how to interact with
the user. The problem description provides relevant context
about the code and expected runtime conditions. The user
ICL examples and query include at least one example con-
figuration along with its corresponding runtime, followed by
a request for the LLM to predict the runtime of an additional
configuration. The problem and configurations are described
in natural language to convey context, intent, and constraints.
This allows the model’s pretrained knowledge to bias how a
configuration change might impact the expected runtime for
the given configuration.

We provide the LLM with increasing amounts of
configuration-runtime pairs, ranging from one to one hun-
dred examples before requesting a runtime prediction. We
select both the in-context learning examples and the query
configuration randomly. We form five disjoint datasets with
the same number of in-context learning examples to limit the
possibility of poor examples biasing the results. To further
reduce the impact of variance, we also evaluate the LLM’s
performance where all examples and the prediction task have
minimal configuration-space editing distance. That is to say,
all configurations are nearly identical to one another so that
the query is as well-defined by the ICL as possible. We
evaluate each prompt with three random seeds to minimize the
effects of LLM sampling variance during generation. Finally,
we attempt to account for the impacts of different underlying
relationships and distributions in the training data by repeating
the above with two distinct array sizes. Changing the array size



Example System Instructions

The user may describe their optimization problem to give specific context.
Then they will demonstrate hyperparameter configurations for a regression problems in a feature-rich text-based CSV
format.
Following the examples, the user will provide a number of configurations without performance values; you will need
to infer the objective based on their prior examples.
Do not alter the user’s proposed configurations.
Do NOT explain your thought process. ONLY respond with your answer following the format that the user demonstrated
for you.

Example User Problem Description

The problem considers source-code optimization for a loop nest in C++ code.
The ‘size’ parameter is invariant, but denotes a relativistic measure of the size of data inputs to the loop nest. Sizes
can be represented by the following values sorted smallest-to-largest: S, SM, M, ML, L, XL
For size ‘SM’, M=130 and N=160.
Size is NOT a tunable component of the problem.
Tunable options in the configuration space are:
* The first and second array inputs to the problem can be independently packed, represented as True/False for each
* The outermost two loops in the nest may be interchanged, represented as True to perform interchange, else False
* Each loop (outer, middle, and inner) are tiled, and the tile sizes can all be independently specified.
The performance objective is the runtime of a program compiled with the modified source, so lower is better.
A pseudocode representation of the problem is:
input: Arrays A[N,M], B[N,M], C[N,N], scalar constant alpha
code segement:
# Optional packing array A
# Optional packing array B
# Optional interchange on outermost two loops
for i=0...N in tiles of size outer loop tiling factor

for j=0...M in tiles of size middle loop tiling factor
for k=0...i in tiles of size inner loop tiling factor

C[i,k] = A[k,j]*alpha*B[i,j] + B[k,j]*alpha*A[i,j]

Example User ICL Examples and Query

Here are the examples:
Hyperparameter configuration: size is SM, first array packed is True, second array packed is False,
interchange first two loops is False, outer loop tiling factor is 80, middle loop tiling factor is 64,
inner loop tiling factor is 100
Performance: ## 0.0022155 ##

Please complete the following:
Hyperparameter configuration: size is SM, first array packed is False, second array packed is True,
interchange first two loops is False,outer loop tiling factor is 128,middle loop tiling factor is 80,
inner loop tiling factor is 80
Performance:

Fig. 1: Example of the LLM system and user prompts for the Polybench/C Syr2k SM task



TABLE I: XGBoost Prediction Metrics

R2 MARE MSRE
Training Examples SM XL SM XL SM XL
100 0.44 0.69 0.17 0.13 0.073 0.058
500 0.67 0.87 0.12 0.09 0.038 0.036
1000 0.72 0.88 0.11 0.07 0.025 0.027
5000 0.80 0.97 0.09 0.04 0.015 0.007
8519 (80% Train) 0.80 0.98 0.08 0.04 0.013 0.003
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Fig. 2: XGBoost runtime predictions with 8519
training examples

changes the importance of features, their relationships to one
another, and the output domain for the runtimes, representing
a highly similar yet novel prediction task.

C. Evaluation Method

To generalize our understanding of LLM performance on
this task, we locally execute the model and record all generated
nonzero logit values. This allows us to construct all “feasible”
generation alternatives in the given scenario. An exhaustive
enumeration of this space would require restarting the model
generation with each candidate token to observe different be-
haviors in the “next-token-prediction” learned objective, which
immediately becomes combinatorically exponential with the
sequence length. Instead, we consider all combinations reach-
able via alternative decodings of the original generation.

While instruction-tuned LLMs, including the model we
utilize, generally follow directions, minor deviations in natural
language can make harnessing model outputs challenging. We
consider improvements to format consistency and instruction-
following capabilities to be out-of-scope for this work. In our
experiments, we manually identify all relevant portions of all
outputs produced by the LLM.

We evaluate the success of the LLM by comparing its gener-
ated value for the query configuration against the ground truth
value, focusing on Mean Absolute Relative Error (MARE),
Mean Squared Relative Error (MSRE) and R2 score as key
success metrics. We focus on relative metrics to improve the
comparability of our results across all experimental settings.
By applying the Central Limit Theorem across all of our
experiments, we can approximate the generalized capability
of the LLM at this task.

D. A Baseline For Comparison

We consider the prediction of traditional ensemble machine
learning techniques, namely XGBoost, a gradient-boosted en-

semble of decision trees [29], [30], as a reasonable baseline for
success. The XGBoost ensemble has tunable hyperparameters,
including the number of estimators, learning rate, maximum
tree depth and minimum number of samples per leaf node.
We find the best-fitting model through a randomized search
with 1000 iterations for varying amounts of available training
data; the results for the best-fitting models are shown in
Table I. Figure 2 demonstrates the high degree of accuracy
by XGBoost across the domain of observations. The accuracy
of XGBoost improves with more training data. However, both
array sizes are amenable to surprisingly high-quality fits even
with minimal training data, permitting the possibility for LLM-
aided techniques to succeed despite limited context.

IV. EXPERIMENTAL RESULTS

A. Quality of LLM Predictions

Contrary to our expectations, the LLM fails to provide
many accurate predictions for the syr2k runtime, regardless
of the training data it receives. The highest R2 score our
LLM achieves is 0.4643 on the SM dataset with 50 in-context
learning examples, roughly equivalent to what XGBoost can
achieve with 100 examples. Unfortunately, the LLM’s perfor-
mance does not continue to scale with additional data, and the
LLM produces a non-negative R2 score in only a quarter of
our experiments, with an average R2 score of -6.643 and a
standard deviation of 22.766.

Our experiments span different output domains, data avail-
ability, data cohesion, and randomization seeds such that we
can attempt to generalize the Mean Absolute Relative Error
(MARE) and Mean Squared Relative Error (MSRE) of the
model across all settings via the Central Limit Theorem [31]
as the mean of MARE and MSRE gradually converge to the
model’s expected true capability.

In our experiments, the mean MARE is 0.3593 with a stan-
dard deviation of 0.2474, while the mean MSRE is 0.1021 with
a standard deviation of 3.2609. These results are not accurate
enough to recommend using LLMs in this setting. However,
the error is small enough to warrant further investigation into
how a model not explicitly designed for this task can achieve
nontrivial success.

We observe that LLM prediction error often increases with
additional ICL examples. At first, we believed that randomly
sampling many examples may be confusing, which motivated
our evaluation setting with maximally similar configurations.
While this does not guarantee similar objective values, lim-
iting the configuration variability generally reduces objective
variability and could align better with the natural language
modality of LLMs. Unfortunately, the LLM did not improve
under these conditions. Instead, the generated values strongly
cluster around the most common ICL values, but very few
exact copies are generated. Slightly over 10% of the generated
values in all experiments are directly copied from ICL, and
our post-hoc analysis proves that the model was unlikely to
copy any other values from the context. This suggests that the
model attempts to produce a value similar to the ICL without



Fig. 3: When given a curated ICL dataset with minimal edit-
distance, the LLM’s responses still cluster around common
prefixes of ICL values.

keen insight into what portion of the input should be given
attention.

Figure 3 demonstrates this phenomenon, with the peak
probabilities occurring near highly dense in-context examples.
We also find that different seeds often produce identical token
sets with slightly altered logit probabilities, supporting the
hypothesis that the knowledge expression is primarily based
on the prompt rather than a randomizable component of the
model. This behavior is demonstrated in Figure 4, where the
same sets of tokens are produced with only trivial deviations in
logit probability, leading to highly similar sampling patterns.

Fig. 4: Bi-modal value distributions commonly arise from
different string prefixes (ie, 1.7 vs 2.7), even across different
seeds.

B. Understanding How LLMs Generate Decimal Sequences

Text generated by LLMs is intended to meaningfully mimic
prior content, which has several intriguing properties. In our
experiments, a decimal digit sequence representing runtime
requires a distinct token for the “.” separator. As a result, each
value string consists of at least three distinct tokens. Because
tokens are generated sequentially, one after another, the initial
prefix digits have the most significant influence on both its
magnitude and all subsequent tokens in the sequence.

Table II displays the mean and standard deviation of the
number of selectable tokens for each generated response across
all of our experiments and the number of values the LLM

TABLE II: Variability in amount of selectable tokens across
all experiments.

Mean # Possibilities Std # Possibilities # Samples
1st Token 4.176 8.805 284
2nd Token 1.000 0.000 284
3rd Token 318.835 353.677 284
4th Token 537.629 327.731 283
5th Token 10.164 45.333 201
6th Token 1.000 0.000 14
7th Token 1.143 0.515 14
8th Token 2.273 1.355 11
9th Token 4.000 0.000 1

Permutations 43,562,830 354,291,070 284

can produce. Because the whole-number magnitude in our
datasets is almost exclusively less than ten seconds, it is
unsurprising that the second token is always a single choice
(the period delimiter), and the first token has relatively limited
options. Variation in the first token selection only exists for
prompts with the XL array size, as all SM objective values
are less than one, and the LLM appropriately reflects this.
The third and fourth tokens form most of the error and
variability in our study, each with an average of hundreds
of possible options. The combinatoric space of unique digit
sequences from these first four tokens immediately reaches and
sometimes surpasses the cardinality of the configuration search
space (10,648 possible configurations), making the optimal
decoding process almost as challenging as identifying the
global minimum in the original optimization problem.

Not all tokens have equivalent string lengths, so the fourth
token’s decimal magnitude is often increased or decreased
based on the string length of the third token. This poses a
challenge to the model’s modality, which is unique to LLMs
as opposed to traditional optimization methods.

C. Searching Within Distributions

Despite the failures of the LLM so far, we attempt to extract
useful information from the distribution of values it could
produce. The first and most obvious strategy would be to
utilize the mean or median of the distribution of possible
values, as the ground truth value usually falls between the
minimum and maximum generable values.

We repeat the same evaluations from Section IV-A using
the mean and median value of the distribution rather than the
sampled value. Both the mean and the median have worse
errors than the observed samples, meaning that the distribution
is not statistically centered in a meaningful manner. Previously,
in Figure 4, we called out how the LLM often produces a
bimodal distribution due to its textual modality. We find that
the logit weights are often higher in the mode closer to the
ground truth, but not to such a degree that this method resolves
enough ambiguity to improve the model’s response.

1) Needles in a Haystack: We use the distribution of
generable values as a “haystack” where a hypothetical post-
hoc decoder may search for “needles” or values within a
given error-bound. This metaphor allows us to determine how
a sophisticated technique may achieve error-bounded success



at different thresholds. Across our experiments, over half of
all LLM-generated values have 50% or less relative error.
This is too broad to be useful; for comparison, XGBoost
trained on 100 samples has 95% of all test values within
the same error bound. The trend of XGBoost exceeding LLM
performance persists at tighter error constraints. The LLM has
20% of its generated values that fall within 10% relative error
compared to 52% for XGBoost. At the extremely tight 1%
relative error bound, merely 3% of LLM values qualify as
“needles” versus 6% for XGBoost. Neither technique excels
beyond the 1% relative error threshold, meaning that XGBoost
strongly outperforms the LLM’s optimal capability across all
error thresholds.

V. DISCUSSION AND FUTURE WORKS

Our results lead to several key ideas regarding current and
future uses of LLMs in HPC tuning and other quantitative
applications based upon few-shot evaluations with in-context
learning.

A. On the Efficacy of Prior Evaluations

While well-intended, our results indicate that several prior
evaluations, such as those considering integer arithmetic and
word problem solving, may not be as rigorous as previously
believed. Other works have discovered that LLMs can memo-
rize public-facing datasets [32] and can overfit and memorize
training data even within a single epoch or less [33]. This
means memorizing basic arithmetic appears more than feasible
for the largest LLMs and may be even more accessible for
more recent “reasoning” models. These models are permitted
intermediate space to prepare a response, functioning as a
scratch memory where information can be written down and
rephrased into a representation that is more likely to have ap-
peared in the training data. The intermediate space can also be
leveraged for tool usage or to overcome some limitations of the
next-token-prediction learning objective, ultimately producing
a higher-quality final output for the user.

The community has also pushed to reduce or eliminate
memorization at training time [34]. While most commercial
LLM providers could benefit from incorporating such tech-
niques, it cannot be assumed that current or future models are
trained similarly. Therefore the possibility of memorization
remains.

B. Thoughts on Output Formats and LLM Post-Processing

While some aspects of our experiments are likely to hold
across related problem settings and datasets, some others may
be partially addressable by other means. A stable output format
can assist the LLM by providing predictable substrings, such
as by expressing all values in scientific notation rather than
decimals. However, scientific notation often makes the prefixes
of values less similar, which our results indicate may harm the
model’s ability to generate useful answers.

We also observed many deviations from our prompt and
example’s imposed output format throughout our experiments,
especially with large amounts of in-context learning examples.

This is a common problem with LLMs that can sometimes be
mitigated by techniques such as Langchain [35] and Guid-
ance [36] or even cleaned up by subsequent LLM agents with
instructions to reformat the text to match a given specification.
While these techniques can be effective, the former often limit
outputs in manners that may be destructive to task success,
while the latter may also fail to follow directions.

C. Reasoning Against Fine-Tuning

We abstain from LLM fine-tuning for several reasons. Fine-
tuning for specific optimizations may be feasible and should
be expected to improve the model’s capabilities. However, we
do not expect fine-tuning and LLM inference to be more com-
putationally efficient than existing non-LLM-based techniques
suitable to such problems. Even with large models’ fantastic
capacity for memorization, collecting enough data to perform
fine-tuning can often be too costly to perform in the first place
or may involve producing enough data for other techniques to
more efficiently solve the problem – as demonstrated by our
baseline with XGBoost on this particular evaluation setting.

D. Future Improvements to LLMs

Our work identifies several problems that appear to be
linked to the training objective of transformer models, the
architecture’s fundamental design, and limitations of textual
modality. Despite these disappointments, a better understand-
ing of the source of limitations creates opportunities for novel
approaches to improve upon. In particular, an LLM can be
given a unique token to signal to a supporting model that a
number should be generated at a particular position within its
response. This mimics modern LLM tool usage patterns by
providing a hook for any number-generating process to trans-
parently assist the LLM in providing higher-quality answers.

Separating this component permits fine-tuning and adapta-
tion with smaller-scale models that only operate in quantitative
domains, perhaps even interfacing with in-progress generation
to still benefit from scenarios where “world knowledge” can
be represented by the model in the prefix of its response.

VI. CONCLUSION

This work demonstrates several limitations of LLMs per-
forming in-context learning for HPC performance tuning.
Namely, the models struggle to incorporate “world knowledge”
meaningfully, often parroting substrings from the contextual
information that unexpectedly decreases performance as ad-
ditional context is provided. We also find that producing
numbers via textual representation has many less-than-ideal
characteristics for precise and reasoned applications. Finally,
we demonstrate that the distribution of tokens with nonzero
logit values does not support a hypothetical improvement
to the decoding process, necessitating different avenues of
research for effective utilization of LLMs in this and similar
applications.
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