
Summary of Limitations 
* Finite context lengths limit access to information, preventing certain uses.
* LLMs appear to rely on memorization, which is not addressed by fine-tuning.
* Flexibility of natural language requires careful interface control.

Limitations of Few-Shot Learning
Fine-tuning is likely necessary for actual performance modeling. We relax modeling 
to basic integer arithmetic, which is well-known to be present within the training 
dataset and does not require fine-tuning. Reliable regression through text generated 
via LLMs will require this amount of mathematic capability at minimum .

System Prompt + ICL Expressions for add()
You are a helpful AI assistant. When presented with a mathematical expression or 
equation, respond with the numeric value that correctly completes the input 
surrounded by "##" characters, ie: ## 1 ##.
5 + 8 = ## 13 ## 9 + 5 = ## 14 ## 0 + 0 = ## 0 ##     1 + 7 = ## 8 ##     6 + 9 = ## 15 ##     2 + 4 = ## 6 ##
5 + 2 = ## 7 ##       4 + 2 = ## 6 ##       4 + 7 = ## 11 ## 7 + 9 = ## 16 ##

Key Takeaways:
* Expressions more likely in training data ⟶ more success (fine-tuning improves)
* Modulus is a rarer operation than addition ⟶ less success (not generalizing)
* Longer strings are harder to memorize ⟶ less success (not generalizing)
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Abstract
Large Language Models (LLMs) capture a certain amount of world knowledge 
spanning many general and technical topics, including programming and 
performance. Without fine-tuning, the use of In-Context Learning (ICL) can 
specialize LLM outputs to perform complex tasks. In this work, we seek to 
demonstrate the regressive capabilities of LLMs in a performance modeling 
capacity. We find initial evidence that may limit LLM utility even after fine-tuning.
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Problem Statement
Most performance modeling tools rely on runtime metrics [2], meaning that 
software executes on a target system to collect data. While accurate and insightful, 
program execution is a considerable bottleneck and can be too costly in some cases. 

Static analysis tools [3] have limited capability to describe program performance 
for highly parallel, dynamic, and nondeterministic applications, but are less accurate 
than runtime metrics and are difficult to adapt to expected runtime constraints.

The pretraining data present in modern LLMs includes some information related to 
performance modeling. By using ICL and special prompting, LLMs may exhibit a 
certain degree of performance modeling or tuning capability.

Background
In computer science, performance modeling generally refers to understanding and 
predicting performance characteristics computing components, such as an 
application’s energy expenditure or runtime under specific conditions.

Common Uses of Performance Modeling
* Job scheduling             * Performance optimization          * Anomaly detection

Without fine-tuning, LLMs can represent a certain amount of knowledge related to 
performance tuning and modeling via prompting, which can be further enhanced 
with fine-tuning. As the technology continually improves, it is reasonable to hope 
that LLMs can play a role in performance modeling by facilitating automatic 
knowledge access, application and transfer.

However, the finite context length of LLMs prevents them from observing very 
large amounts of text (such as complex source codes, intermediate representations, 
or extensive performance history). A recent ICLR paper proposed an LLM-assisted 
technique, LLAMBO [4], which claims that fine-tuning may not be strictly 
necessary for LLMs to provide performance-modeling capabilities.

Learning with LLAMBO
LLAMBO [4] uses Llama3-7b [5] or other LLMs model and tune performance
using examples of tuning configurations and their performance, along with general 
information about the tuning problem. It then prompts the LLM ten times to predict 
the performance of a new configuration and uses the average of parse-able results
as the LLM’s prediction.

System Prompt + ICL Natural Language
The following are hyperparameter configurations for a DatasetIdentity:syr2k and the 
corresponding performance measured in mean squared error. The model is evaluated 
on a tabular regression task. The tabular dataset contains 480 samples and 6 features 
(0 categorical, 6 numerical).  Your response should only contain the predicted mean 
squared error in the format ## performance ##.
Hyperparameter configuration: outer_loop_array_packed is True, middle_loop_array_packed is True, 
inner_loop_array_packed is True, outer_loop_tiling_factor is 16, middle_loop_tiling_factor is 64, 
inner_loop_tiling_factor is 80
Performance: ## 0.000593 ##
Hyperparameter configuration: outer_loop_array_packed is False, middle_loop_array_packed is True, 
inner_loop_array_packed is True, outer_loop_tiling_factor is 8, middle_loop_tiling_factor is 16, 
inner_loop_tiling_factor is 16
Performance: ## 0.001115 ##
Hyperparameter configuration: outer_loop_array_packed is True, middle_loop_array_packed is True, 
inner_loop_array_packed is True, outer_loop_tiling_factor is 16, middle_loop_tiling_factor is 2048, 
inner_loop_tiling_factor is 20
Performance: ## 0.000873 ##
Hyperparameter configuration: outer_loop_array_packed is False, middle_loop_array_packed is True, 
inner_loop_array_packed is True, outer_loop_tiling_factor is 128, middle_loop_tiling_factor is 100, 
inner_loop_tiling_factor is 64
Performance: ## 0.001190 ##
Hyperparameter configuration: outer_loop_array_packed is True, middle_loop_array_packed is True, 
inner_loop_array_packed is True, outer_loop_tiling_factor is 32, middle_loop_tiling_factor is 100, 
inner_loop_tiling_factor is 100
Performance: ## 0.000663 ##
Hyperparameter configuration: outer_loop_array_packed is False, middle_loop_array_packed is False, 
inner_loop_array_packed is True, outer_loop_tiling_factor is 96, middle_loop_tiling_factor is 2048, 
inner_loop_tiling_factor is 32
Performance: ## 0.001390 ##

Careful Checking Catches Copy Cat Cheating
We present LLAMBO with an out-of-distribution example and prompt it to predict 
its performance:
Hyperparameter configuration: outer_loop_array_packed is False, 
middle_loop_array_packed is False, inner_loop_array_packed is True, 
outer_loop_tiling_factor is 8, middle_loop_tiling_factor is 100, 
inner_loop_tiling_factor is 128
Performance:

The common hyperparameters present in the ICL data are highlighted above. Partial 
matches exist, but different performance values are expected.

Every response collected by LLAMBO is directly represented in the ICL data. 
Match the colors to the ICL data to observe which configurations it is reproducing!
## 0.001190 ##, ## 0.000593 ##, ## 0.001115 ##, ## 0.000663 ##, ## 0.000873 ##, 
## 0.000593 ##, ## 0.001390 ##, ## 0.000663 ##, ## 0.000873 ##, ## 0.000663 ##
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